10 research outputs found

    A new unique phenomenon for the RY Scuti binary star

    Get PDF

    Investigation of Non-Stable Processes in Close Binary Ry Scuti

    Full text link
    We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.Comment: 11 pages, 6 figures, 2 table

    Results of UBV Photoelectric Observations of the Early-Type Eclipsing Binary System XZ Cep

    Full text link
    Results of the three-colour photoelectric observation of the close binary system XZ Cep, obtained at the Abastumani Astrophysical observatory, are presented.Comment: 23 pages, 3 figures, 1 tebl

    Episodic mass loss in binary evolution to the Wolf-Rayet phase: Keck and HST proper motions of RY Scuti's nebula

    Full text link
    Binary mass transfer via Roche-lobe overflow (RLOF) is a key channel for producing stripped-envelope Wolf-Rayet (WR) stars and may be critical to account for SN Ib/c progenitors. RY Scuti is an extremely rare example of a massive binary star caught in this brief but important phase. Its toroidal nebula indicates equatorial mass loss during RLOF, while the mass-gaining star is apparently embedded in an opaque accretion disk. RY Scuti's toroidal nebula has two components: an inner ionised double-ring system, and an outer dust torus that is twice the size of the ionised rings. We present two epochs of Lband Keck NGS-AO images of the dust torus, plus three epochs of HST images of the ionised gas rings. Proper motions show that the inner ionised rings and the outer dust torus came from two separate ejection events roughly 130 and 250 yr ago. This suggests that RLOF in massive contact binaries can be accompanied by eruptive and episodic burst of mass loss, reminiscent of LBVs. We speculate that the repeating outbursts may arise in the mass gainer from instabilities associated with a high accretion rate. If discrete mass-loss episodes in other RLOF binaries are accompanied by luminous outbursts, they might contribute to the population of extragalactic optical transients. When RLOF ends for RY Scuti, the overluminous mass gainer, currently surrounded by an accretion disk, will probably become a B[e] supergiant and may outshine the hotter mass-donor star that should die as a Type Ib/c supernova.Comment: 15 pages, 7 figures, submitted to MNRA

    COMET Phase-I technical design report

    No full text

    COMET Phase-I Technical Design Report

    Get PDF
    International audienceThe Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (⁠|ÎŒ\mu|–|ee| conversion, |Ό−N→e−N\mu^{-}N \rightarrow e^{-}N|⁠); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is |3.1×10−153.1\times10^{-15}|⁠, or 90% upper limit of a branching ratio of |7×10−157\times 10^{-15}|⁠, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the |ÎŒ\mu|–|ee| conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described
    corecore