9 research outputs found

    Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand

    Get PDF
    BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both

    Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand

    Get PDF
    Low-density asymptomatic infections of Plasmodium spp. are common in low endemicity areas worldwide, but outside Africa, their contribution to malaria transmission is poorly understood. Community-based studies with highly sensitive molecular diagnostics are needed to quantify the asymptomatic reservoir of Plasmodium falciparum and P. vivax infections in Thai communities.; A cross-sectional survey of 4309 participants was conducted in three endemic areas in Kanchanaburi and Ratchaburi provinces of Thailand in 2012. The presence of P. falciparum and P. vivax parasites was determined using 18S rRNA qPCR. Gametocytes were also detected by pfs25 / pvs25 qRT-PCRs.; A total of 133 individuals were found infected with P. vivax (3.09%), 37 with P. falciparum (0.86%), and 11 with mixed P. vivax/ P. falciparum (0.26%). The clear majority of both P. vivax (91.7%) and P. falciparum (89.8%) infections were not accompanied by any febrile symptoms. Infections with either species were most common in adolescent and adult males. Recent travel to Myanmar was highly associated with P. falciparum (OR = 9.0, P = 0.001) but not P. vivax infections (P = 0.13). A large number of P. vivax (71.5%) and P. falciparum (72.0%) infections were gametocyte positive by pvs25/pfs25 qRT-PCR. Detection of gametocyte-specific pvs25 and pfs25 transcripts was strongly dependent on parasite density. pvs25 transcript numbers, a measure of gametocyte density, were also highly correlated with parasite density (r 2 = 0.82, P < 0.001).; Asymptomatic infections with Plasmodium spp. were common in western Thai communities in 2012. The high prevalence of gametocytes indicates that these infections may contribute substantially to the maintenance of local malaria transmission

    Transmission efficiency of Plasmodium vivax at low parasitaemia

    No full text
    Abstract Background Plasmodium vivax is responsible for much of malaria outside Africa. Although most P. vivax infections in endemic areas are asymptomatic and have low parasite densities, they are considered a potentially important source of transmission. Several studies have demonstrated that asymptomatic P. vivax carriers can transmit the parasite to mosquitoes, but the efficiency has not been well quantified. The aim of this study is to determine the relationship between parasite density and mosquito infectivity, particularly at low parasitaemia. Methods Membrane feeding assays were performed using serial dilutions of P. vivax-infected blood to define the relationship between parasitaemia and mosquito infectivity. Results The infection rate (oocyst prevalence) and intensity (oocyst load) were positively correlated with the parasite density in the blood. There was a broad case-to-case variation in parasite infectivity. The geometric mean parasite density yielding a 10% mosquito infection rate was 33 (CI 95 9–120) parasites/µl or 4 (CI 95 1–17) gametocytes/µl. The geometric mean parasite density yielding a 50% mosquito infection rate was 146 (CI 95 36–586) parasites/µl or 13 (CI 95 3–49) gametocytes/µl. Conclusion This study quantified the ability of P. vivax to infect Anopheles dirus at over a broad range of parasite densities. It provides important information about parasite infectivity at low parasitaemia common among asymptomatic P. vivax carriers

    Natural human Plasmodium infections in major Anopheles mosquitoes in western Thailand.

    Get PDF
    BackgroundThe Thai-Myanmar border is a remaining hotspot for malaria transmission. Malaria transmission in this region continues year-round, with a major peak season in July-August, and a minor peak in October-November. Malaria elimination requires better knowledge of the mosquito community structure, dynamics and vectorial status to support effective vector control.MethodsAdult Anopheles mosquitoes were collected using CDC light traps and cow bait in 7 villages along the Thai-Myanmar border in January 2011 - March 2013. Mosquitoes were determined to species by morphological characters. Plasmodium-positivity was determined by circumsporozoite protein ELISA.ResultsThe 2986 Anopheles mosquitoes collected were assigned to 26 species, with Anopheles minimus sensu lato (s.l.) (40.32%), An. maculatus s.l. (21.43%), An. annularis s.l. (14.43%), An. kochi (5.39%), An. tessellatus (5.26%), and An. barbirostris s.l. (3.52%) being the top six most abundant species. Plasmodium-infected mosquitoes were found in 22 positive samples from 2906 pooled samples of abdomens and heads/thoraxes. Four mosquito species were found infected with Plasmodium: An. minimus s.l., An. maculatus s.l., An. annularis s.l. and An. barbirostris s.l. The infectivity rates of these mosquitoes were 0.76, 0.37, 0.72, and 1.74%, respectively. Consistent with a change in malaria epidemiology to the predominance of P. vivax in this area, 20 of the 22 infected mosquito samples were P. vivax-positive. The four potential vector species all displayed apparent seasonality in relative abundance. While An. minimus s.l. was collected through the entire year, its abundance peaked in the season immediately after the wet season. In comparison, An. maculatus s.l. numbers showed a major peak during the wet season. The two potential vector species, An. annularis s.l. and An. barbirostris s.l., both showed peak abundance during the transition from wet to dry season. Moreover, An. minimus s.l. was more abundant in indoor collections, whereas An. annularis s.l. and An. barbirostris s.l. were more abundant in outdoor collections, suggesting their potential role in outdoor malaria transmission.ConclusionsThis survey confirmed the major vector status of An. minimus s.l. and An. maculatus s.l. and identified An. annularis s.l. and An. barbirostris s.l. as additional vectors with potential importance in malaria transmission after the wet season

    Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand

    No full text
    BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both

    Additional file 1: Table S1. of Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand

    No full text
    Performance of qPCR and qRT-PCR. The threshold cycles (CT) are shown for detection of plasmid standards at different copy numbers per reaction. The means and the standard errors of the mean (SEM) are shown for CT values used to determine the amplification efficiency (E) and r 2, with values in parenthesis excluded. Neg indicates no amplification. The limit of detection (red) is defined as the lowest copy number with > 50% success rate. (DOCX 24 kb

    Controlled human malaria infection with a clone of Plasmodium vivax with high-quality genome assembly.

    Get PDF
    Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies
    corecore