259 research outputs found

    Intra-operative spectroscopic assessment of surgical margins during breast conserving surgery

    Get PDF
    Background: In over 20% of breast conserving operations, postoperative pathological assessment of the excised tissue reveals positive margins, requiring additional surgery. Current techniques for intra-operative assessment of tumor margins are insufficient in accuracy or resolution to reliably detect small tumors. There is a distinct need for a fast technique to accurately identify tumors smaller than 1 mm2 in large tissue surfaces within 30 min. Methods: Multi-modal spectral histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the excised breast tissue. New algorithms were developed to optimally utilize auto-fluorescence images to guide Raman measurements and achieve the required detection accuracy over large tissue surfaces (up to 4 × 6.5 cm2). Algorithms were trained on 91 breast tissue samples from 65 patients. Results: Independent tests on 121 samples from 107 patients - including 51 fresh, whole excision specimens - detected breast carcinoma on the tissue surface with 95% sensitivity and 82% specificity. One surface of each uncut excision specimen was measured in 12–24 min. The combination of high spatial-resolution auto-fluorescence with specific diagnosis by Raman spectroscopy allows reliable detection even for invasive carcinoma or ductal carcinoma in situ smaller than 1 mm2. Conclusions: This study provides evidence that this multimodal approach could provide an objective tool for intra-operative assessment of breast conserving surgery margins, reducing the risk for unnecessary second operations

    Response of Cocoa Trees (Theobroma cacao) to a 13-month Dessication Period in Sulawesi, Indonesia

    Get PDF
    In South-east Asia, ENSO-related droughts represent irregularly occuring hazards for agroforestry systems containing cocoa which are predicted to increase in severity with expected climate warming. To characterize the drought response of mature cocoa tree, we conducted the Sulawesi Throughfall Displacement Experiment in a shaded (Gliricidia sepium) cocoa agroforestry system in Central Sulawesi, Indonesia. Three large sub-canopy roofs were installed to reduce throughfall by about 80% over a 13-month period to test the hypotheses that (i) cocoa trees are sensitive to drought due to their shallow fine root system, and (ii)bean yield is more sensitive to drought than leaf or stem growth. As 83% of fine root (diameter 2mm) was located in the upper 40 cm of the soil, the cocoa tree examined had a very shallow root system. Cocoa and Gliricidia differed in their vertical rooting patterns, thereby reducing competition for water. Despite being exposed for several mnths to soil water contents close to the conventional wilting point, cocoa trees showed no significant decreases in leaf biomass, stem and branch wood production or fine root biomass. Possible causes are active osmotic adjusment in roots, mitigation of drought stress by shading from Gliricidia or other factors. By contrast, production of cocoa bean
    corecore