259 research outputs found
Intra-operative spectroscopic assessment of surgical margins during breast conserving surgery
Background: In over 20% of breast conserving operations, postoperative pathological assessment of the excised tissue reveals positive margins, requiring additional surgery. Current techniques for intra-operative assessment of tumor margins are insufficient in accuracy or resolution to reliably detect small tumors. There is a distinct need for a fast technique to accurately identify tumors smaller than 1 mm2 in large tissue surfaces within 30 min.
Methods: Multi-modal spectral histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the excised breast tissue. New algorithms were developed to optimally utilize auto-fluorescence images to guide Raman measurements and achieve the required detection accuracy over large tissue surfaces (up to 4 × 6.5 cm2). Algorithms were trained on 91 breast tissue samples from 65 patients.
Results: Independent tests on 121 samples from 107 patients - including 51 fresh, whole excision specimens - detected breast carcinoma on the tissue surface with 95% sensitivity and 82% specificity. One surface of each uncut excision specimen was measured in 12–24 min. The combination of high spatial-resolution auto-fluorescence with specific diagnosis by Raman spectroscopy allows reliable detection even for invasive carcinoma or ductal carcinoma in situ smaller than 1 mm2.
Conclusions: This study provides evidence that this multimodal approach could provide an objective tool for intra-operative assessment of breast conserving surgery margins, reducing the risk for unnecessary second operations
Response of Cocoa Trees (Theobroma cacao) to a 13-month Dessication Period in Sulawesi, Indonesia
In South-east Asia, ENSO-related droughts represent irregularly occuring hazards for agroforestry systems containing cocoa which are predicted to increase in severity with expected climate warming. To characterize the drought response of mature cocoa tree, we conducted the Sulawesi Throughfall Displacement Experiment in a shaded (Gliricidia sepium) cocoa agroforestry system in Central Sulawesi, Indonesia. Three large sub-canopy roofs were installed to reduce throughfall by about 80% over a 13-month period to test the hypotheses that (i) cocoa trees are sensitive to drought due to their shallow fine root system, and (ii)bean yield is more sensitive to drought than leaf or stem growth. As 83% of fine root (diameter 2mm) was located in the upper 40 cm of the soil, the cocoa tree examined had a very shallow root system. Cocoa and Gliricidia differed in their vertical rooting patterns, thereby reducing competition for water. Despite being exposed for several mnths to soil water contents close to the conventional wilting point, cocoa trees showed no significant decreases in leaf biomass, stem and branch wood production or fine root biomass. Possible causes are active osmotic adjusment in roots, mitigation of drought stress by shading from Gliricidia or other factors. By contrast, production of cocoa bean
Recommended from our members
Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts
The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere–ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about ten days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin
Active surveillance of patients who have sentinel node positive melanoma:An international, multi-institution evaluation of adoption and early outcomes after the Multicenter Selective Lymphadenectomy trial II (MSLT-2)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168248/1/cncr33483.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168248/2/cncr33483_am.pd
Recommended from our members
Monsoons: global energetics and local physics as drivers of past, present and future monsoons
Global constraints on momentum and energy govern the structure of the zonal mean tropical circulation and rainfall. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and paleo variability deviates substantially from that of the longitudinal mean through mechanisms neither fully understood nor well simulated. A framework grounded in global constraints yet encompassing the complexities of monsoon dynamics is needed to identify the causes of mismatch between theory, models, and observations and, ultimately, improve regional climate projection. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and from the surface to the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and paleo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations
- …