8 research outputs found

    SARS Coronavirus nsp1 Protein Induces Template-Dependent Endonucleolytic Cleavage of mRNAs: Viral mRNAs Are Resistant to nsp1-Induced RNA Cleavage

    Get PDF
    SARS coronavirus (SCoV) nonstructural protein (nsp) 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5β€²-end of a reporter mRNA having a short 5β€² untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES) region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5β€² untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5β€² cap structure and 3β€² poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5β€²-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection

    Alphacoronavirus Transmissible Gastroenteritis Virus nsp1 Protein Suppresses Protein Translation in Mammalian Cells and in Cell-Free HeLa Cell Extracts but Not in Rabbit Reticulocyte Lysateβ–Ώ

    No full text
    The nsp1 protein of transmissible gastroenteritis virus (TGEV), an alphacoronavirus, efficiently suppressed protein synthesis in mammalian cells. Unlike the nsp1 protein of severe acute respiratory syndrome coronavirus, a betacoronavirus, the TGEV nsp1 protein was unable to bind 40S ribosomal subunits or promote host mRNA degradation. TGEV nsp1 also suppressed protein translation in cell-free HeLa cell extract; however, it did not affect translation in rabbit reticulocyte lysate (RRL). Our data suggested that HeLa cell extracts and cultured host cells, but not RRL, contain a host factor(s) that is essential for TGEV nsp1-induced translational suppression

    A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19

    No full text
    A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. To address this, Shi and colleagues present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV2-Nluc), and show that it has potential for large-scale vaccine evaluation and neutralizing antibody testing

    Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis.

    No full text
    While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection
    corecore