13 research outputs found

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change.publishedVersio

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change

    Discovering marine biodiversity in the 21st century

    No full text
    We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases

    A new mixed ligand coordination polymer of Mn(II): structural aspect and cryomagnetic study

    No full text
    A new 1-D polymeric chain complex [Mn(pydc)(1,10-phen)]n· nH2O (pydc = pyridine-2,3-dicarboxylate, 1,10-phen = 1,10-phenanthroline) has been synthesised and characterised by elemental analysis, FT-IR spectrum, thermal analysis and variable temperature magnetic susceptibility studies. Single crystal X-ray diffraction study reveals that the central Mn(II) ion is in a distorted octahedral coordination geometry, and is coordinated to pydc and 1,10-phen. The complex shows interesting hydrogen bond modes involving the dicarboxylates and lattice water molecules. The presence of weak antiferromagnetic coupling with J = −0.72 cm−1 for the complex has been concluded from the cryomagnetic susceptibility studies

    Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock

    No full text
    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-alpha/beta) in serum, similar to 50- and similar to 10-fold increases in levels of IFN-gamma and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-alpha/beta receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-alpha/beta induction, with IRF7 being upregulated > 100-fold in infected wild-type mice. These studies suggest that inadequate IFN-alpha/beta responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome

    RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation

    Get PDF
    Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme Aand to a lesser extent granzyme K, but not granzyme B, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme Amice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT0028129

    RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation

    No full text
    corecore