109 research outputs found
Twin Deficits or Distant Cousins? Evidence from India
The twin-deficits theory has intrigued economists and policy-makers alike for the past few decades. In a Keynesian economy, budget deficit increases the absorption of the economy, causes import expansions, and thereby, worsens the trade deficit. It also causes domestic interest rates to rise, domestic currency to appreciate, and thereby, contributes to trade deficits. However, according to the Ricardian Equivalence Hypothesis (REH), rising budget deficits implies higher future tax-liabilities so people would save more and consume less. As a result, an inter-temporal shift between taxes and budget deficits would have no impact on the real interest, or the trade deficit. Thus, the issue of whether the twin-deficits phenomenon holds becomes more of an empirical question, and the recent fiscal expansions to curb recession makes it timely to revisit the phenomenon, especially for the developing countries confronting both the deficits on a chronic basis. To this end, we make a case study of India, using the bounds-testing approach to cointegration and error-correction modeling on monthly and quarterly data over 1998-2009. Our results suggest that the twin-deficits theory holds for India in the short-run (validating the Keynesian channel) but not in the long run (validating the REH)
Recommended from our members
The Beam Line X NdFe-steel hybrid wiggler for SSRL
A wiggler magnet with 15 periods, each 12.85 cm long, which achieves 1.40 T at a 2.1 cm gap (2.26T at 0.8 cm) has been designed and is now in fabrication at LBL. This wiggler will be the radiation source of the high intensity synchrotron radiation beam line for the Beam Line X PRT facility at SSRL. The magnet utilizes Neodymium-Iron (NdFe) material and Vanadium Permendur (steel) in the hybrid configuration to achieve simultaneously a high magnetic field and short period. Magnetic field adjustment is with a driven chain and ball screw drive system. The magnetic structure is external to an s.s. vacuum chamber which has thin walls, 0.76 mm thickness, at each pole tip for higher field operation. Magnetic design, construction details and magnetic measurements are presented
Comparative branching-time semantics for Markov chains
This paper presents various semantics in the branching-time spectrum of discrete-time and continuous-time Markov chains (DTMCs and CTMCs).\ud
Strong and weak bisimulation equivalence and simulation pre-orders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic). Apart from presenting various existing branching-time relations in a uniform manner, this paper presents the following new results: (i) strong simulation for CTMCs, (ii) weak simulation for CTMCs and DTMCs, (iii) logical characterizations thereof (including weak bisimulation for DTMCs), (iv) a relation between weak bisimulation and weak simulation equivalence, and (v) various connections between equivalences and pre-orders in the continuous- and discrete-time setting. The results are summarized in a branching-time spectrum for DTMCs and CTMCs elucidating their semantics as well as their relationship
Magnetism in Dense Quark Matter
We review the mechanisms via which an external magnetic field can affect the
ground state of cold and dense quark matter. In the absence of a magnetic
field, at asymptotically high densities, cold quark matter is in the
Color-Flavor-Locked (CFL) phase of color superconductivity characterized by
three scales: the superconducting gap, the gluon Meissner mass, and the
baryonic chemical potential. When an applied magnetic field becomes comparable
with each of these scales, new phases and/or condensates may emerge. They
include the magnetic CFL (MCFL) phase that becomes relevant for fields of the
order of the gap scale; the paramagnetic CFL, important when the field is of
the order of the Meissner mass, and a spin-one condensate associated to the
magnetic moment of the Cooper pairs, significant at fields of the order of the
chemical potential. We discuss the equation of state (EoS) of MCFL matter for a
large range of field values and consider possible applications of the magnetic
effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Stochastic Approximation to Understand Simple Simulation Models
This paper illustrates how a deterministic approximation of a stochastic process
can be usefully applied to analyse the dynamics of many simple simulation models. To
demonstrate the type of results that can be obtained using this approximation, we present two
illustrative examples which are meant to serve as methodological references for researchers
exploring this area. Finally, we prove some convergence results for simulations of a family
of evolutionary games, namely, intra-population imitation models in n-player games with
arbitrary payoffs.Ministerio de Educación (JC2009- 00263), Ministerio de Ciencia e Innovación (CONSOLIDER-INGENIO 2010: CSD2010-00034, DPI2010-16920
Fermi acceleration in astrophysical jets
We consider the acceleration of energetic particles by Fermi processes (i.e.,
diffusive shock acceleration, second order Fermi acceleration, and gradual
shear acceleration) in relativistic astrophysical jets, with particular
attention given to recent progress in the field of viscous shear acceleration.
We analyze the associated acceleration timescales and the resulting particle
distributions, and discuss the relevance of these processes for the
acceleration of charged particles in the jets of AGNs, GRBs and microquasars,
showing that multi-component powerlaw-type particle distributions are likely to
occur.Comment: 6 pages, one figure; based on talk at "The multimessenger approach to
unidentified gamma-ray sources", Barcelona/Spain, July 2006; accepted for
publication in Astrophysics and Space Scienc
Risk of Bowel Obstruction in Patients Undergoing Neoadjuvant Chemotherapy for High-risk Colon Cancer
Objective:
This study aimed to identify risk criteria available before the point of treatment initiation that can be used to stratify the risk of obstruction in patients undergoing neoadjuvant chemotherapy (NAC) for high-risk colon cancer.
Background:
Global implementation of NAC for colon cancer, informed by the FOxTROT trial, may increase the risk of bowel obstruction.
Methods:
A case-control study, nested within an international randomized controlled trial (FOxTROT; ClinicalTrials.gov: NCT00647530). Patients with high-risk operable colon cancer (radiologically staged T3-4 N0-2 M0) that were randomized to NAC and developed large bowel obstruction were identified. First, clinical outcomes were compared between patients receiving NAC in FOxTROT who did and did not develop obstruction. Second, obstructed patients (cases) were age-matched and sex-matched with patients who did not develop obstruction (controls) in a 1:3 ratio using random sampling. Bayesian conditional mixed-effects logistic regression modeling was used to explore clinical, radiologic, and pathologic features associated with obstruction. The absolute risk of obstruction based on the presence or absence of risk criteria was estimated for all patients receiving NAC.
Results:
Of 1053 patients randomized in FOxTROT, 699 received NAC, of whom 30 (4.3%) developed obstruction. Patients underwent care in European hospitals including 88 UK, 7 Danish, and 3 Swedish centers. There was more open surgery (65.4% vs 38.0%, P=0.01) and a higher pR1 rate in obstructed patients (12.0% vs 3.8%, P=0.004), but otherwise comparable postoperative outcomes. In the case-control–matched Bayesian model, 2 independent risk criteria were identified: (1) obstructing disease on endoscopy and/or being unable to pass through the tumor [adjusted odds ratio: 9.09, 95% credible interval: 2.34–39.66] and stricturing disease on radiology or endoscopy (odds ratio: 7.18, 95% CI: 1.84–32.34). Three risk groups were defined according to the presence or absence of these criteria: 63.4% (443/698) of patients were at very low risk (10%).
Conclusions:
Safe selection for NAC for colon cancer can be informed by using 2 features that are available before treatment initiation and identifying a small number of patients with a high risk of preoperative obstruction
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
- …