63 research outputs found

    Radiation Generated by Charge Migration Following Ionization

    Full text link
    Electronic many-body effects alone can be the driving force for an ultrafast migration of a positive charge created upon ionization of molecular systems. Here we show that this purely electronic phenomenon generates a characteristic IR radiation. The situation when the initial ionic wave packet is produced by a sudden removal of an electron is also studied. It is shown that in this case a much stronger UV emission is generated. This emission appears as an ultrafast response of the remaining electrons to the perturbation caused by the sudden ionization and as such is a universal phenomenon to be expected in every multielectron system.Comment: 5 pages, 4 figure

    The role of symmetric vibrational modes in the dehoherence of correlation-driven charge migration

    Full text link
    Due to the electron correlation, a fast removal of an electron from a molecule may create a coherent superposition of cationic states and in this way initiate pure electronic dynamics in which the hole-charge left by ionization migrates throughout the system on an ultrashort time scale. The coupling to the nuclear motion introduces a decoherence that eventually traps the charge and a crucial question in the field of attochemistry is how long the electronic coherence lasts and which nuclear degrees of freedom are mostly responsible for the decoherence. Here, we report full-dimensional quantum calculations of the concerted electron-nuclear dynamics following outer-valence ionization of propynamide, which reveal that the pure electronic coherences last only 2-3 fs before being destroyed by the nuclear motion. Our analysis shows that the normal modes that are mostly responsible for the fast electronic decoherence are the symmetric in-plane modes. All other modes have little or no effect on the charge migration. This information can be useful to guide the development of reduced dimensionality models for larger systems or the search of molecules with long coherence times

    Quantum Interference Paves the Way for Long-Lived Electronic Coherences

    Get PDF
    The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon

    PAH under XUV excitation: an ultrafast XUV- photochemistry experiment for astrophysics

    Get PDF
    International audienceUnderstanding processes induced by XUV excitation of Polycyclic Aromatic Hydrocarbons (PAHs) is at the heart of molecular astrophysics, which aims at understanding molecular evolution in interstellar media. We used ultrashort XUV pulses to produce highly excited PAHs cations. The photo-induced dynamics is probed using a pump-probe XUV-IR spectroscopy. By studying PAH from small (naphthalene) to large (hexabenzocoronene) PAHs, we show that the dynamic is governed by the large density of states, in which many-body quantum effects are dominant

    XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment

    Get PDF
    15Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.openopenMarciniak, A.*; Despré, V.; Barillot, T.; Rouzée, A.; Galbraith, M.C.E.; Klei, J.; Yang, C.-H.; Smeenk, C.T.L.; Loriot, V.; Reddy, S. Nagaprasad; Tielens, A.G.G.M.; Mahapatra, S.; Kuleff, A.I.; Vrakking, M.J.J.; Lépine, F.Marciniak, A.; Despré, V.; Barillot, T.; Rouzée, A.; Galbraith, M. C. E.; Klei, J.; Yang, C. -H.; Smeenk, C. T. L.; Loriot, V.; Reddy, S. Nagaprasad; Tielens, A. G. G. M.; Mahapatra, S.; Kuleff, A. I.; Vrakking, M. J. J.; Lépine, F

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science
    corecore