178 research outputs found

    Fluorescent oxide nanoparticles adapted to active tips for near-field optics

    Full text link
    We present a new kind of fluorescent oxide nanoparticles with properties well suited to active-tip based near-field optics. These particles with an average diameter in the range 5-10 nm are produced by Low Energy Cluster Beam Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical photoluminescence, cathodoluminescence and near-field scanning optical microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in size are observed. These emitters are validated as building blocks of active NSOM tips by coating a standard optical tip with a 10 nm thick layer of YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing NSOM imaging of test surfaces.Comment: Changes made following Referee's comments; added references; one added figure. See story on this article at: http://nanotechweb.org/cws/article/tech/3606

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed

    Femtosecond Stimulated Raman Study of the Photoactive Flavoprotein AppABLUF

    Get PDF
    Femtosecond stimulated Raman Spectroscopy (FSRS) is applied to study the photocycle of a blue light using flavin (BLUF) domain photoreceptor, AppABLUF. It is shown that FSRS spectra are sensitive to the light adapted state of the protein and probe its excited state dynamics. The dominant contribution to the most sensitive excited state Raman active modes is from flavin ring modes. However, TD-DFT calculations for excited state structures indicate that reproduction and assignment of the experimentally observed spectral shift will require high level calculations on the flavin in its specific protein environment

    Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature

    Full text link
    Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assemblies. However, single-molecule techniques to access ultrafast coherences at physiological conditions were not available so far. Here we show by employing femtosecond pulse-shaping techniques that quantum coherences in single organic molecules can be created, probed, and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi-oscillations and control the coherent superposition state in a single molecule, thus performing a basic femtosecond single-qubit operation at room temperature

    Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy : Theoretical framework and experimental observation

    Get PDF
    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA′XX′ spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales

    Ultrafast vibrational spectroscopic Studies on the photoionization of the α-Tocopherol analogue Trolox C

    Get PDF
    The initial events after photoexcitation and photoionization of α-tocopherol (vitamin E) and the analogue Trolox C have been studied by femtosecond stimulated Raman spectroscopy, transient absorption spectroscopy and time-resolved infrared spectroscopy. Using these techniques it was possible to follow the formation and decay of the excited state, neutral and radical cation radicals and the hydrated electron that are produced under the various conditions examined. α Tocopherol and Trolox C in methanol solution appear to undergo efficient homolytic dissociation of the phenolic –OH bond to directly produce the tocopheroxyl radical. In contrast, Trolox C photochemistry in neutral aqueous solutions involves intermediate formation of a radical cation and the hydrated electron which undergo geminate recombination within 100 ps in competition with deprotonation of the radical cation. The results are discussed in relation to recently proposed mechanisms for the reaction of α-tocopherol with peroxyl radicals, which represents the best understood biological activity of this vitamin

    Disease recurrence in paediatric renal transplantation

    Get PDF
    Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules

    Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Get PDF
    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution

    Emergence and rearrangement of dynamic supramolecular aggregates visualized by interferometric scattering microscopy

    No full text
    Studying dynamic self-assembling systems in their native environment is essential for understanding the mechanisms of self-assembly and thereby exerting full control over these processes. Traditional ensemble-based analysis methods often struggle to reveal critical features of the self-assembly that occur at the single particle level. Here, we describe a label-free single-particle assay to visualize real-time self-assembly in aqueous solutions by interferometric scattering microscopy. We demonstrate how the assay can be applied to biphasic reactions yielding micellar or vesicular aggregates, detecting the onset of aggregate formation, quantifying the kinetics at the single particle level, and distinguishing sigmoidal and exponential growth of aggregate populations. Furthermore, we can follow the evolution in aggregate size in real time, visualizing the nucleation stages of the self-assembly processes and record phenomena such as incorporation of oily components into the micelle or vesicle lumen
    corecore