10 research outputs found

    Scaling slowly rotating asteroids with stellar occultations

    Get PDF
    Context. As evidenced by recent survey results, the majority of asteroids are slow rotators (spin periods longer than 12 h), but lack spin and shape models because of selection bias. This bias is skewing our overall understanding of the spins, shapes, and sizes of asteroids, as well as of their other properties. Also, diameter determinations for large (>60 km) and medium-sized asteroids (between 30 and 60 km) often vary by over 30% for multiple reasons. Aims. Our long-term project is focused on a few tens of slow rotators with periods of up to 60 h. We aim to obtain their full light curves and reconstruct their spins and shapes. We also precisely scale the models, typically with an accuracy of a few percent. Methods. We used wide sets of dense light curves for spin and shape reconstructions via light-curve inversion. Precisely scaling them with thermal data was not possible here because of poor infrared datasets: large bodies tend to saturate in WISE mission detectors. Therefore, we recently also launched a special campaign among stellar occultation observers, both in order to scale these models and to verify the shape solutions, often allowing us to break the mirror pole ambiguity. Results. The presented scheme resulted in shape models for 16 slow rotators, most of them for the first time. Fitting them to chords from stellar occultation timings resolved previous inconsistencies in size determinations. For around half of the targets, this fitting also allowed us to identify a clearly preferred pole solution from the pair of two mirror pole solutions, thus removing the ambiguity inherent to light-curve inversion. We also address the influence of the uncertainty of the shape models on the derived diameters. Conclusions. Overall, our project has already provided reliable models for around 50 slow rotators. Such well-determined and scaled asteroid shapes will, for example, constitute a solid basis for precise density determinations when coupled with mass information. Spin and shape models in general continue to fill the gaps caused by various biases

    Relationship between hand and eye preferences

    No full text
    This study evaluated the relationship between hand and eye preferences in 343 men and 290 women aged between 18 and 42 years (22.11±2.07). Right-handed men preferred their right eyes, whereas left-handed men preferred their left eyes (p .05), but a significant difference was observed between left-eye preference and a preference for both eyes (p = .008). Right-handed women preferred their right eyes, whereas left-handed women preferred their left eyes (p .05). The results suggest that cultural differences among study groups and individual differences within study groups explain the inconsistencies regarding hand and eye preferences. Moreover, the findings broaden our knowledge about eye preference in relation to hand preference in a Turkish population. © Universitätsverlag Ulm GmbH 2008

    Contact injuries of the female field hockey players

    No full text
    WOS: 000445197700010BACKGROUND: Field hockey is classified as a non-contact sport, however it is clear from literature review that most injuries occur by contact. Despite the old history of the sport, field hockey has only recently started to develop in Turkey. This is the first research about the field hockey injuries which take place especially due to contact. METHODS: Ninety six Turkish female field hockey players took part in this study and they filled an anonymous questionnaire including field hockey information (position, and playing experience) and contact injury history of players in the 2011-2012 season (numbers of contact injuries, type of injuries, contact mechanism of injuries and detailed body parts injured with positions of players). RESULTS: The most common type of injury was contusion (50% of the total 382 contact injuries). Injuries caused by the contact of the ball are the main reasons of such injuries and they constitute 46% of the contact injuries. Besides, it was found out that the body part affected most commonly by contact injuries is the upper limb (48%). Defenders have the highest rate of contact injury as common as 41%. There were significant differences between types of injuries and mechanisms of the contact injuries (P=0.001). CONCLUSIONS: In sum, it was concluded that more protective clothes and equipment would make contact injuries less common and probably make field hockey more popular. The regular and systematic data collection about sport injuries will improve the prevention and control of these injuries

    Thermal properties of slowly rotating asteroids: Results from a targeted survey

    Get PDF
    Context. Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the subsurface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Aims. Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. Methods. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12 h, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. Results. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3−3 and 3+−333 and 45+−6030 J m−2 s−1/2 K−1. Conclusions. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias

    Shape and spin determination of Barbarian asteroids

    No full text
    Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been suggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims. With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main-Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods. We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the convergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results. Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed

    Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model

    Get PDF
    Context. Recent results for asteroid rotation periods from the TESS mission showed how strongly previous studies have underestimated the number of slow rotators, revealing the importance of studying those targets. For most slowly rotating asteroids (those with P > 12 h), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. Also, it is still unclear whether signatures of different surface material properties can be seen in thermal inertia determined from mid-infrared thermal flux fitting. Aims. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. Our goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics. Methods. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS spacecrafts. In addition to data in the visible range, we also use thermal data from infrared space observatories (mainly IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model. This novel method has so far been applied to only a few targets, and therefore in this work we further validate the method itself. Results. We present the models of 16 slow rotators, including two updated models. All provide good fits to both thermal and visible data.The obtained sizes are on average accurate at the 5% precision level, with diameters found to be in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 h, and the thermal inertia covers a wide range of values, from 2 to −2 s−1∕2 K−1, not showing any correlation with the period. Conclusions. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which might be due to their small skin depth

    Physical properties of the trans-Neptunian object (38628) Huya from a multi-chord stellar occultation

    Full text link
    Within our international program to obtain accurate physical properties of trans-Neptunian objects (TNOs) we predicted a stellar occultation by the TNO (38628) Huya of the star Gaia DR2 4352760586390566400 (mG = 11.5 mag.) for March 18, 2019. After an extensive observational campaign, we updated the prediction and it turned out to be favorable to central Europe. Therefore, we mobilized half a hundred professional and amateur astronomers, and the occultation was finally detected from 21 telescopes located at 18 sites. This makes the Huya event one of the best ever observed stellar occultation by a TNO in terms of the number of chords. We determine accurate size, shape, and geometric albedo, and we also provide constraints on the density and other internal properties of this TNO. The 21 positive detections of the occultation by Huya allowed us to obtain well-separated chords which permitted us to fit an ellipse for the limb of the body at the moment of the occultation (i.e., the instantaneous limb) with kilometric accuracy. The projected semi-major and minor axes of the best ellipse fit obtained using the occultation data are (a', b') = (217.6 ±\pm 3.5 km, 194.1 ±\pm 6.1 km) with a position angle of the minor axis P' = 55.2 ±\pm 9.1 degrees. From this fit, the projected area-equivalent diameter is 411.0 ±\pm 7.3 km. This diameter is compatible with the equivalent diameter for Huya obtained from radiometric techniques (D = 406 ±\pm 16 km). From this instantaneous limb, we obtained the geometric albedo for Huya (pV\rm_V = 0.079 ±\pm 0.004) and we explored possible 3D shapes and constraints to the mass density for this TNO. We did not detect the satellite of Huya through this occultation, but the presence of rings or debris around Huya is constrained using the occultation data. We also derived an upper limit for a putative Pluto-like global atmosphere of about psurf_{\rm surf} = 10 nbar.Comment: Accepted for publication in Astronomy & Astrophysics (30-April-2022). 19 pages, 7 figure
    corecore