32 research outputs found

    Temporal evolution and differential patterns of cellular reconstitution after therapy for childhood cancers

    Get PDF
    AbstractThe cellular reconstitution after childhood cancer therapy is associated with the risk of infection and efficacy of revaccination. Many studies have described the reconstitution after stem cell transplantation (SCT). The recovery after cancer treatment in children who have not undergone SCT has mainly been investigated in acute lymphoblastic leukemia (ALL), less for solid tumors. Here, we have examined the temporal evolution of total leukocyte, neutrophil and lymphocyte counts as surrogate parameters for the post-therapeutic immune recovery in a cohort of n = 52 patients with ALL in comparison to n = 58 patients with Hodgkin’s disease (HD) and n = 22 patients with Ewing sarcoma (ES). Patients with ALL showed an efficient increase in blood counts reaching the age-adjusted lower limits of normal between 4 and 5 months after the end of maintenance therapy. The two groups of patients with HD and ES exhibited a comparably delayed recovery of total leukocytes due to a protracted post-therapeutic lymphopenia which was most pronounced in patients with HD after irradiation. Overall, we observed a clearly more efficient resurgence of total lymphocyte counts in patients aged below 12 years compared to patients aged 12 to 18 years. Our results underline that the kinetics of cellular reconstitution after therapy for HD and ES differ significantly from ALL and depend on treatment regimens and modalities as well as on patient age. This suggests a need for disease, treatment, and age specific recommendations concerning the duration of infection prophylaxis and the timing of revaccination.</jats:p

    Effects of the STAMP-inhibitor asciminib on T cell activation and metabolic fitness compared to tyrosine kinase inhibition by imatinib, dasatinib, and nilotinib

    Get PDF
    T cell function is central to immune reconstitution and control of residual chronic myeloid leukemia (CML) cells after treatment initiation and is associated with achieving deep molecular response as a prerequisite for treatment-free remission, the ultimate therapeutic goal in CML. ATP-pocket-binding tyrosine kinase inhibitors (TKIs) like imatinib, dasatinib, and nilotinib are widely used for treating CML, but they have shown to inhibit T cell function as an “off-target” effect. Therefore, we tested asciminib, the first-in-class BCR::ABL1 fusion protein inhibitor specifically targeting the ABL myristoyl pocket (STAMP) and compared its effects on T cell function with imatinib, dasatinib, and nilotinib. Whereas all four TKIs inhibited the expression of the co-stimulatory protein CD28, the amino acid transporter CD98, proliferation, and secretion of pro-inflammatory cytokines IFNÎł, IL-6, and IL-17A upon T cell stimulation, asciminib had less impact on PD-1, activation markers, and IL-2 secretion. T cells treated with asciminib and the other TKIs maintained their ability to mobilize their respiratory capacity and glycolytic reserve, which is an important surrogate for metabolic fitness and flexibility. Overall, we found milder inhibitory effects of asciminib on T cell activation, which might be beneficial for the immunological control of residual CML cells.Open Access funding enabled and organized by Projekt DEAL.Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, GermanyFriedrich-Alexander-UniversitĂ€t Erlangen-NĂŒrnberg (1041

    Synergistic lethality in chronic myeloid leukemia – targeting oxidative phosphorylation and unfolded protein response effectively complements tyrosine kinase inhibitor treatment

    Get PDF
    AbstractChronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.</jats:p

    Imatinib treatment and longitudinal growth in pediatric patients with chronic myeloid leukemia: Influence of demographic, pharmacological, and genetic factors in the German CML-PAED cohort

    Get PDF
    In children and adolescents, impaired growth due to tyrosine kinase inhibitor therapy remains an insufficiently studied adverse effect. This study examines demographic, pharmacological, and genetic factors associated with impaired longitudinal growth in a uniform pediatric cohort treated with imatinib. We analyzed 94 pediatric patients with chronic myeloid leukemia (CML) diagnosed in the chronic phase and treated with imatinib for >12 months who participated in the Germany-wide CML-PAEDII study between February 2006 and February 2021. During imatinib treatment, significant height reduction occurred, with medians of -0.35 standard deviation score (SDS) at 12 months and -0.76 SDS at 24 months. Cumulative height SDS change (Δheight SDS) showed a more pronounced effect in prepubertal patients during the first year but were similar between prepubertal and pubertal subgroups by the second year (-0.55 vs. -0.50). From months 12 to 18 on imatinib, only 18% patients achieved individually longitudinal growth adequate to the growth standard (Δheight SDS≄0). When patients were divided into two subgroups based on median Δheight SDS (classifier Δheight SDS > or ≀-0.37) after one year on imatinib therapy, cohort 1 (Δheight SDS extending -0.37) showed younger age at diagnosis, a higher proportion of prepubertal children, but also better treatment response and higher imatinib serum levels. Exploring the association of growth parameters with pharmacokinetically relevant single nucleotide polymorphisms, known for affecting imatinib response, showed no correlation. This retrospective study provides new insights into imatinib-related growth impairment. We emphasize the importance of optimizing treatment strategies for pediatric patients to realize their maximum growth potential

    The Cytogenetic Landscape of Pediatric Chronic Myeloid Leukemia Diagnosed in Chronic Phase

    Get PDF
    Simple Summary Philadelphia chromosome-positive chronic myeloid leukemia (CML) is characterized by the translocation of the chromosomes 9 and 22. Additional non-Philadelphia aberrations of chromosomes (nPhAs) and their prognostic relevance for the disease course are comparably well known in adult patients with CML. However, due to the rarity of CML in children and adolescents, nPhAs have hardly been determined systematically in these age groups. Here, we present a large analysis of nPhAs detected in a cohort of 161 patients younger than 18 years who had been diagnosed with CML in chronic phase and enrolled in the German national CML-PAED-II registry. We found a distinct distribution of nPhAs in this pediatric cohort with possible impact on treatment response whereas the survival remained unaffected. Our findings emphasize differences in the disease biology between pediatric and adult patients and prompt further joint international efforts to acquire more data on the disease in this age group. Abstract Philadelphia chromosome-positive chronic myeloid leukemia (CML) is cytogenetically characterized by the classic translocation t(9;22)(q34;q11), whereas additional non-Philadelphia aberrations (nPhAs) have been studied extensively in adult patients with CML, knowledge on nPhAs in pediatric patients with CML is still sparse. Here, we have determined nPhAs in a cohort of 161 patients younger than 18 years diagnosed with chronic phase CML and consecutively enrolled in the German national CML-PAED-II registry. In 150 cases (93%), an informative cytogenetic analysis had been performed at diagnosis. In total, 21 individuals (13%) showed nPhAs. Of these, 12 (8%) had a variant translocation, 4 (3%) additional chromosomal aberrations (ACAs) and 5 (3%) harbored a complex karyotype. Chromosome 15 was recurrently involved in variant translocations. No significant impact of the cytogenetic subgroup on the time point of cytogenetic response was observed. Patients with a complex karyotype showed an inferior molecular response compared to patients carrying the classic translocation t(9;22)(q34;q11), variant translocations or ACAs. No significant differences in the probability of progression-free survival and overall survival was found between patients with nPhAs and patients with the classic Philadelphia translocation only. Our results highlight the distinct biology of pediatric CML and underline the need for joint international efforts to acquire more data on the disease pathogenesis in this age group

    Sarcoma treatment in the era of molecular medicine

    Get PDF
    Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.Peer reviewe

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Genomic EWS-FLI1 Fusion Sequences in Ewing Sarcoma Resemble Breakpoint Characteristics of Immature Lymphoid Malignancies

    Get PDF
    Chromosomal translocations between the EWS gene and members of the ETS gene family are characteristic molecular features of the Ewing sarcoma. The most common translocation t(11;22)(q24;q12) fuses the EWS gene to FLI1, and is present in 85–90% of Ewing sarcomas. In the present study, a specifically designed multiplex long-range PCR assay was applied to amplify genomic EWS-FLI1 fusion sites from as little as 100 ng template DNA. Characterization of the EWS-FLI1 fusion sites of 42 pediatric and young adult Ewing sarcoma patients and seven cell lines revealed a clustering in the 5â€Č region of the EWS-breakpoint cluster region (BCR), in contrast to random distribution of breakpoints in the FLI1-BCR. No association of breakpoints with various recombination-inducing sequence motifs was identified. The occurrence of small deletions and duplications at the genomic junction is characteristic of involvement of the non-homologous end-joining (NHEJ) repair system, similar to findings at chromosomal breakpoints in pediatric leukemia and lymphoma
    corecore