25 research outputs found

    Sarcoma treatment in the era of molecular medicine

    Get PDF
    Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.Peer reviewe

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Genomic EWS-FLI1 Fusion Sequences in Ewing Sarcoma Resemble Breakpoint Characteristics of Immature Lymphoid Malignancies

    No full text
    Chromosomal translocations between the EWS gene and members of the ETS gene family are characteristic molecular features of the Ewing sarcoma. The most common translocation t(11;22)(q24;q12) fuses the EWS gene to FLI1, and is present in 85–90% of Ewing sarcomas. In the present study, a specifically designed multiplex long-range PCR assay was applied to amplify genomic EWS-FLI1 fusion sites from as little as 100 ng template DNA. Characterization of the EWS-FLI1 fusion sites of 42 pediatric and young adult Ewing sarcoma patients and seven cell lines revealed a clustering in the 5′ region of the EWS-breakpoint cluster region (BCR), in contrast to random distribution of breakpoints in the FLI1-BCR. No association of breakpoints with various recombination-inducing sequence motifs was identified. The occurrence of small deletions and duplications at the genomic junction is characteristic of involvement of the non-homologous end-joining (NHEJ) repair system, similar to findings at chromosomal breakpoints in pediatric leukemia and lymphoma

    Continuous therapy response references for BCR::ABL1 monitoring in pediatric chronic myeloid leukemia

    No full text
    Abstract Response to tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia (CML) is monitored by quantification of BCR::ABL1 transcript levels. Milestones for assessing optimal treatment response have been defined in adult CML patients and are applied to children and adolescents although it is questionable whether transferability to pediatric patients is appropriate regarding genetic and clinical differences. Therefore, we analyzed the molecular response kinetics to TKI therapy in 129 pediatric CML patients and investigated whether response assessment based on continuous references can support an early individual therapy adjustment. We applied a moving quantiles approach to establish a high-resolution response target curve and contrasted the median responses in all patients with the median of the ideal target curve obtained from a subgroup of optimal responders. The high-resolution response target curve of the optimal responder group presents a valuable tool for continuous therapy monitoring of individual pediatric CML patients in addition to the fixed milestones. By further comparing BCR::ABL1 transcript levels with BCR::ABL1 fusion gene copy numbers, it is also possible to model the differential dynamics of BCR::ABL1 expression and cell number under therapy. The developed methodology can be transferred to other biomarkers for continuous therapy monitoring

    Molecular Composition of Genomic TMPRSS2-ERG Rearrangements in Prostate Cancer

    No full text
    There is increasing interest in the use of cell-free circulating tumor DNA (ctDNA) as a serum marker for therapy assessment in prostate cancer patients. Prostate cancer is characterized by relatively low numbers of mutations, and, in contrast to many other common epithelial cancers, commercially available single nucleotide mutation assays for quantification of ctDNA are insufficient for therapy assessment in this disease. However, prostate cancer shares some similarity with translocation-affected mesenchymal tumors (e.g., leukemia and Ewing sarcoma), which are common in pediatric oncology, where chromosomal translocations are used as biomarkers for quantification of the tumor burden. Approximately 50% of prostate cancers carry a chromosomal translocation resulting in generation of the TMPRSS2-ERG fusion gene, which is unique to the tumor cells of each individual patient because of variability in the fusion breakpoint sites. In the present study, we examined the structural preconditions for TMPRSS2-ERG fusion sites in comparison with mesenchymal tumors in pediatric patients to determine whether the sequence composition is suitable for the establishment of tumor-specific quantification assays in prostate cancer patients. Genomic repeat elements represent potential obstacles to establishment of quantification assays, and we found similar proportions of repeat elements at fusion sites in prostate cancer to those reported for mesenchymal tumors, where genomic fusion sequences are established as biomarkers. Our data support the development of the TMPRSS2-ERG fusion gene as a noninvasive tumor marker for therapy assessment, risk stratification, and relapse detection to improve personalized therapy strategies for patients with prostate cancer

    Late-Onset Triple A Syndrome: A Risk of Overlooked or Delayed Diagnosis and Management

    Get PDF
    BACKGROUND/AIMS: A 33-year-old man was referred for the first time to the Division of Neurology because of the presence and progression of neurological symptoms. Dysphagia, weakness, reduced tear production, and nasal speech were present. In order to point the attention of late-onset triple A syndrome we describe this case and review the literature. METHODS: Hormonal and biochemical evaluation, Schirmer test, tilt test and genetic testing for AAAS gene mutations. RESULTS: Late-onset triple A syndrome caused by a novel homozygous missense mutation in the AAAS gene (A167V in exon 6) was diagnosed at least 17 years after symptom onset. CONCLUSIONS: The association between typical signs and symptoms of triple A syndrome should suggest the diagnosis even if they manifest in adulthood. The diagnosis should be confirmed by Schirmer test, endocrine testing (both basal and dynamic), genetic analysis, and detailed gastroenterological and neurological evaluations. Awareness of the possible late onset of the disease and of diagnosis in adulthood is still poor among clinicians, the acquaintance with the disease is more common among pediatricians. The importance of an adequate multidisciplinary clinical approach, dynamic testing for early diagnosis of adrenal insufficiency and periodical reassessment of adrenal function are emphasized

    Late-Onset Triple A Syndrome: A Risk of Overlooked or Delayed Diagnosis and Management

    Get PDF
    Background/Aims: A 33-year-old man was referred for the first time to the Division of Neurology because of the presence and progression of neurological symptoms. Dysphagia, weakness, reduced tear production, and nasal speech were present. In order to point the attention of late-onset triple A syndrome we describe this case and review the literature. Methods: Hormonal and biochemical evaluation, Schirmer test, tilt test and genetic testing for AAAS gene mutations. Results: Late-onset triple A syndrome caused by a novel homozygous missense mutation in the AAAS gene (A167V in exon 6) was diagnosed at least 17 years after symptom onset. Conclusions: The association between typical signs and symptoms of triple A syndrome should suggest the diagnosis even if they manifest in adulthood. The diagnosis should be confirmed by Schirmer test, endocrine testing (both basal and dynamic), genetic analysis, and detailed gastroenterological and neurological evaluations. Awareness of the possible late onset of the disease and of diagnosis in adulthood is still poor among clinicians, the acquaintance with the disease is more common among pediatricians. The importance of an adequate multidisciplinary clinical approach, dynamic testing for early diagnosis of adrenal insufficiency and periodical reassessment of adrenal function are emphasized.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Genomic fusion site sequencing.

    No full text
    <p>(A) Genomic organization of the <i>EWS</i> and <i>FLI1</i> genes and corresponding breakpoint cluster regions (BCR). Nested primer sets for der22 are shown as double headed arrows. (B) Representative breakpoint sequencing workflow. Left: Gel electrophoresis of MLR-PCR products from two tumor samples in lane 1 and 2 (lane 3 negative control DNA; lane 4 ddH<sub>2</sub>O; lane 5 positive control DNA; M = DNA ladder). Center: Gel electrophoresis of single long-range PCR products from 1<sup>st</sup> round MLR-PCR product of sample 1 (lane 1–11; lane 12 positive control) to identify <i>FLI1</i> and <i>EWS</i> primers next to the fusion sites and to reduce amplification product size for direct sequencing. Right: Sequencing of the shortest amplification product and alignment to <i>EWS</i> and <i>FLI1</i> reference sequences.</p
    corecore