28 research outputs found

    Landscape-Level Long-Term Biological Research and Monitoring Plan for the Crane Trust

    Get PDF
    Our obligation is to make sure we are effectively utilizing science to meet the objectives of the Platte River Whooping Crane Maintenance Trust (1981) laid out in its charter “to rehabilitate and preserve a portion of the habitat for Whooping Cranes and other migratory birds in the Big Bend reach of the Platte River between Overton and Chapman (i.e., Central Platte River Valley), Nebraska”. The original declaration is aimed at maintaining “the physical, hydrological, and biological integrity of the Big Bend area as a life-support system for the Whooping Crane and other migratory species that utilize it.” It was clear from the institution’s founding that to accomplish this goal it was necessary to study the effectiveness of land conservation and management actions in providing habitat for Whooping Cranes and other migratory bird species. Quality habitat necessarily comprises all the components that Whooping Cranes and other migratory bird life require to complete their migrations –food and shelter– including nutrient rich diet items such as invertebrates, vascular plants, herpetofauna, fish, and small mammals as well as suitable roosting and foraging locations including wide braided rivers and undisturbed wet meadows (Allen 1952; Steenhof et al. 1988; Geluso 2013; Caven et al. 2019, 2021). Article “A” of the Crane Trust’s (1981) declaration is “to establish a written habitat monitoring plan which can be used to describe change in…[habitat] within the Big Bend of the Platte River…utilized by Sandhill Cranes and Whooping Cranes….” Following initial inventories including avian (Hay and Lingle 1982), vegetation (Kolstad 1981; Nagel 1981), small mammals (Springer 1981), herpetofauna (Jones et al. 1981), insects (Ratcliffe 1981), and fish (Cochar and Jenson 1981), a variety of excellent research has continued at the Crane Trust (https://cranetrust.org/conservation-research/publications/). However, despite the clarity of the Trust’s original declaration, long-term habitat monitoring has not progressed unabated throughout the history of the Crane Trust.https://digitalcommons.unl.edu/zeabook/1130/thumbnail.jp

    Temporospatial shifts in Sandhill Crane staging in the Central Platte River Valley in response to climatic variation and habitat change

    Get PDF
    Over 80% of the Mid-Continent Sandhill Crane (Antigone canadensis) Population (MCP), estimated at over 660,000 individuals, stops in the Central Platte River Valley (CPRV) during spring migration from mid-February through mid-April. Research suggests that the MCP may be shifting its distribution spatially and temporally within the CPRV. From 2002 to 2017, we conducted weekly aerial surveys of Sandhill Cranes staging in the CPRV to examine temporal and spatial trends in their abundance and distribution. Then, we used winter temperature and drought severity measures from key wintering and early migratory stopover locations to assess the impacts of weather patterns on annual migration chronology in the CPRV. We also evaluated channel width and land cover characteristics using aerial imagery from 1938, 1998, and 2016 to assess the relationship between habitat change and the spatial distribution of the MCP in the CPRV. We used generalized linear models, cumulative link models, and Akaike’s information criterion corrected for small sample sizes (AICc) to compare temporal and spatial models. Temperatures and drought conditions at wintering and migration locations that are heavily used by Greater Sandhill Cranes (A. c. tabida) best predicted migration chronology of the MCP to the CPRV. The spatial distribution of roosting Sandhill Cranes from 2015 to 2017 was best predicted by the proportion of width reduction in the main channel since 1938 (rather than its width in 2016) and the proportion of land cover as prairie-meadow habitat within 800 m of the Platte River. Our data suggest that Sandhill Cranes advanced their migration by an average of just over 1 day per year from 2002 to 2017, and that they continued to shift eastward, concentrating at eastern reaches of the CPRV. Climate change, land use change, and habitat loss have all likely contributed to Sandhill Cranes coming earlier and staying longer in fewer reaches of the CPRV, increasing their site use intensity. These historically unprecedented densities may present a disease risk to Sandhill Cranes and other waterbirds, including Whooping Cranes (Grus americana). Our models suggest that conservation actions may be maintaining Sandhill Crane densities in areas that would otherwise be declining in use. We suggest that management actions intended to mitigate trends in the distribution of Sandhill Cranes, including wet meadow restoration, may similarly benefit prairie- and braided river–endemic species of concern. Más del 80% de la población de grullas canadienses (Antigone canadensis), de la zona central del continente (MCP por sus siglas en inglés), estimada en más de 660,000, descansa en el valle central del Río Platte (CPRV por sus siglas en inglés) durante su migración de primavera, desde mediados de febrero hasta mediados de abril. Diversos estudios indican que su distribución espacial y temporal podría estar cambiando dentro del CPRV. Desde el año 2002 hasta el 2017 realizamos sondeos aéreos semanales de grullas canadienses en el CPRV para estudiar las tendencias temporales y espaciales relacionadas a su abundancia y distribución. Usamos mediciones de temperatura durante el invierno y de la severidad de la sequía de lugares claves de invernada y de sitios de descanso durante su migración temprana para evaluar el impacto de los patrones climáticos en la cronología migratoria anual del CPRV. También analizamos la amplitud del canal y las características de la cubierta terrestre usando imágenes aéreas de 1938, 1998 y 2016 con el fin de evaluar la relación entre el cambio de hábitat y la distribución espacial de la MCP en el CPRV. Utilizamos modelos lineales generalizados, modelos de enlace acumulativo y el criterio de información de Akaike adecuados a muestras pequeñas (AICc), para comparar modelos temporales y espaciales. Las condiciones climáticas y de sequía en los sitios de invernada y migración más usados por la grulla canadiense mayor (A. c. tabida) predijeron mejor la cronología migratoria de la MCP en el CPRV. La reducción de la amplitud del canal principal desde 1938, junto con el porcentaje de cubierta terrestre como hábitat de pradera dentro de los 800 m del río Platte, fue el mejor predictor de la distribución espacial de la grulla canadiense desde el año 2015 hasta el 2017. Nuestros estudios indican que las grullas canadienses adelantaron su migración en un promedio poco más de un día por año entre el 2002 y el 2017 y que continuaron desplazándose hacia el este, concentrándose en los extremos orientales del CPRV. El cambio climático, el cambio de uso del suelo y la pérdida del hábitat probablemente contribuyeron a la migración temprana de esta especie y a su permanencia más prolongada en algunos sectores del CPRV, aumentando la intensidad del uso del sitio. Estas densidades sin precedentes podrían presentar un riesgo de enfermedad para la grulla canadiense y otras aves acuáticas, incluidas las grullas trompeteras (Grus americana). Nuestros modelos indican que las medidas actuales de conservación podrían ser la causa de preservación de la densidad poblacional de la grulla canadiense en áreas en las que, de otra forma, su presencia estaría disminuyendo. Sugerimos que las medidas de control destinadas a mitigar la tendencia de distribución de la grulla canadiense, incluyendo la restauración de los prados húmedos, pueden beneficiar de igual manera a las especies endémicas, praderas y ríos trenzados de nuestro interés

    A Long-Term Vision for an Ecologically Sound Platte River

    Get PDF
    The Platte River extends about 310 mi (499 km) from North Platte, Nebraska, to its terminus at the Missouri River confluence near Plattsmouth, Nebraska. The Platte River Valley is a continentally significant ecosystem that serves as a major stopover for migratory waterbirds in the Central Flyway including the endangered Whooping Crane (Grus americana) and \u3e1 million Sandhill Cranes (Antigone canadensis) at the peak of spring migration. However, the Platte River Valley also supports a great diversity of avifauna including grassland breeding birds, native stream fish, vascular plants, herpetofauna, mammals, pollinators, and aquatic macroinvertebrates. Despite ongoing conservation efforts since the mid-1970s the ecosystem remains largely conservation dependent and an increasing number of species across taxa are being considered at risk of regional extirpation or outright extinction. However, given the attention provided to conservation in the Platte River Valley and the need to maintain ecologically functional stopover sites in the Central Flyway, there is a great opportunity to create a resilient refugium for biodiversity conservation in the central Great Plains. To that end we convened a working group of \u3e18 individuals representing \u3e9 organizations including representatives from non-profit conservation organizations, universities, and state and federal natural resource agencies to develop a long-term vision for an ecologically sound Platte River Valley (PRV). We met in groups of varying size for \u3e170 hours throughout a more than 3-year period and developed conservation priorities and objectives using a landscape design process. Landscape design is an interdisciplinary conservation planning process that incorporates components of landscape ecology and social dimensions of natural resources with the explicit intention of improving conservation implementation.https://digitalcommons.unl.edu/zeabook/1128/thumbnail.jp

    Parkinson's disease age at onset genome-wide association study : Defining heritability, genetic loci, and α-synuclein mechanisms

    Get PDF
    Background Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. Objectives To identify the genetic determinants of PD age at onset. Methods Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. Results We estimated that the heritability of PD age at onset attributed to common genetic variation was similar to 0.11, lower than the overall heritability of risk for PD (similar to 0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in alpha-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. Conclusions Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. (c) 2019 International Parkinson and Movement Disorder SocietyPeer reviewe

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background: Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. / Methods: We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. / Findings: Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). / Interpretation: These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. / Funding: The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Investigation of autosomal genetic sex differences in Parkinson's disease

    Get PDF
    Objective: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average similar to 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner.Methods: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases.Results: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (similar to 20%).Interpretation: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients.Neurological Motor Disorder

    Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
    corecore