9 research outputs found

    Temporal frequency of radio emissions for the April 25, 1984 flare

    Get PDF
    The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends

    Interplanetary Magnetic Field & Equatorial Ionosphere

    Get PDF
    84-89Large variations in the geomagnetic field near the dip equator are examined in relation to the variations of the equatorial q-type Es, E-region drifts and the interplanetary magnetic field. It is shown that the decrease of equatorial electrojet current is associated with the sudden increase of northward component (Bz) of the interplanetary magnetic field, It is suggested that the ambiguities in the interpretations of DP2 events can be easily removed if the corresponding ionospheric data are also utilized in the analysis. The index ΔH at equatorial electrojet station minus ΔH at non-electrojet station provides a very reliable index for studying the variations of the equatorial electrojet currents even during geomagnetically disturbed conditions. This index is closely correlated with the auroral indices AU and AL; positive change in the auroral electrojet indices is associated with a decrease of the equatorial electrojet current even in minor details

    Interhemispheric asymmetry of the high-latitude ionospheric convection pattern

    No full text
    The assimilative mapping of ionospheric electrodynamics technique has been used to derive the large-scale high-latitude ionospheric convection patterns simultaneously in both northern and southern hemispheres during the period of January 27-29, 1992. When the interplanetary magnetic field (IMF) Bz component is negative, the convection patterns in the southern hemisphere are basically the mirror images of those in the northern hemisphere. The total cross-polar-cap potential drops in the two hemispheres are similar. When Bz is positive and |By| > Bz, the convection configurations are mainly determined by By and they may appear as normal “two-cell” patterns in both hemispheres much as one would expect under southward IMF conditions. However, there is a significant difference in the cross-polar-cap potential drop between the two hemispheres, with the potential drop in the southern (summer) hemisphere over 50% larger than that in the northern (winter) hemisphere. As the ratio of |By|/Bz decreases (less than one), the convection configuration in the two hemispheres may be significantly different, with reverse convection in the southern hemisphere and weak but disturbed convection in the northern hemisphere. By comparing the convection patterns with the corresponding spectrograms of precipitating particles, we interpret the convection patterns in terms of the concept of merging cells, lobe cells, and viscous cells. Estimates of the “merging cell” potential drops, that is, the potential ascribed to the opening of the dayside field lines, are usually comparable between the two hemispheres, as they should be. The “lobe cell” provides a potential between 8.5 and 26 k V and can differ greatly between hemispheres, as predicted. Lobe cells can be significant even for southward IMF, if |By| > |Bz|. To estimate the potential drop of the “viscous cells,” we assume that the low-latitude boundary layer is on closed field lines. We find that this potential drop varies from case to case, with a typical value of 10 kV. If the source of these cells is truly a viscous interaction at the flank of the magnetopause, the process is likely spatially and temporally varying rather than steady state
    corecore