8 research outputs found

    High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a

    Get PDF
    The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevis rapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs

    Comprehensive analysis of human subtelomeres with combined binary ratio labelling fluorescence in situ hybridisation

    No full text
    Cryptic subtelomeric chromosome rearrangements play an important role in the aetiology of mental retardation, congenital anomalies, miscarriages and neoplasia. To facilitate a comprehensive molecular-cytogenetic analysis of these extremely gene-rich and mutation-prone chromosome regions, novel multicolour fluorescence in situ hybridisation (FISH) techniques are being developed. As yet, subtelomeric FISH methods have either had limited multiplicities, making it necessary to perform many hybridisations per patient, or a limited scope of analysable chromosome mutation types, thus not detecting some aberration types such as pericentric inversions or very small aberrations. COBRA (COmbined Binary RAtio) labelling is a generic multicolour FISH technique that combines ratio and combinatorial labelling to attain especially high multiplicities with few fluorochromes. The Subtelomere COBRA FISH method ('S-COBRA FISH') described here detects efficiently all 41 BAC and PAC FISH probes necessary for a complete subtelomere screening in only two hybridisations. It was applied to the analysis of 10 cases with known and partially known aberrations and successfully detected balanced and unbalanced translocations, deletions and an unbalanced pericentric inversion in a mosaic situation. The ability of S-COBRA FISH to efficiently detect all types of balanced and unbalanced subtelomeric chromosome aberrations makes it the most comprehensive diagnostic procedure for human subtelomeric chromosome regions described to date

    Genetic Ablation of Caveolin-1 Drives Estrogen-Hypersensitivity and the Development of DCIS-Like Mammary Lesions

    No full text
    Caveolin-1 (Cav-1) loss-of-function mutations are exclusively associated with estrogen receptor-positive (ER(+)) human breast cancers. To dissect the role of Cav-1 loss-of-function in the pathogenesis of human breast cancers, we used Cav-1−/− null mice as a model system. First, we demonstrated that Cav-1−/− mammary epithelia overexpress two well-established ER co-activator genes, CAPER and Foxa1, in addition to ER-α. Thus, the functional loss of Cav-1 may be sufficient to confer estrogen-hypersensitivity in the mammary gland. To test this hypothesis directly, we subjected Cav-1−/− mice to ovariectomy and estrogen supplementation. As predicted, Cav-1−/− mammary glands were hyper-responsive to estrogen and developed dysplastic mammary lesions with adjacent stromal angiogenesis that resemble human ductal carcinoma in situ. Based on an extensive biomarker analysis, these Cav-1−/− mammary lesions contain cells that are hyperproliferative and stain positively with nucleolar (B23/nucleophosmin) and stem/progenitor cell markers (SPRR1A and β-catenin). Genome-wide transcriptional profiling identified many estrogen-related genes that were over-expressed in Cav-1−/− mammary glands, including CAPER—an ER co-activator gene and putative stem/progenitor cell marker. Analysis of human breast cancer samples revealed that CAPER is overexpressed and undergoes a cytoplasmic-to-nuclear shift during the transition from pre-malignancy to ductal carcinoma in situ. Thus, Cav-1−/− null mice are a new preclinical model for studying the molecular paradigm of estrogen hypersensitivity and the development of estrogen-dependent ductal carcinoma in situ lesions

    Bibliografia

    No full text
    corecore