51 research outputs found

    Serum-borne factors in cancer patients with advanced cachexia: influence on adipose cells

    Get PDF
    Background: The clinical syndrome cancer cachexia is recognized by a considerable weight loss being out of proportion to any reduction in energy intake. The underlying mechanisms are not completely known, but the marked weight loss is attributable to depletion of adipose tissue as well as skeletal muscle mass. Enhanced lipolysis in adipocytes, apoptosis of preadipocytes may be important for loss of adipose tissue.Results: Sera from cachectic cancer patients induced apoptosis in cultured human preadipocytes at a higher rate than sera from non-cachectic cancer patients (control group). There was a tendency towards increased mRNA levels of the pro-apoptotic Bcl-2 gene Bax after incubation of preadipocytes with cachectic sera. Moreover, the mRNA levels of anti-apoptotic Bcl-XL and pro-apoptotic Bcl-XS were increased and decreased, respectively, as compared to incubation with control sera. However, lipolysis was not enhanced in cultured human adipocytes after incubation with sera from cachectic cancer patients as compared to non-cachectic cancer patients.Methods: Serum samples from cachectic cancer patients (n=8) and non-cachectic cancer patients (n=6) were collected. Human SGBS (Simpson-Golabi-Behmel syndrome) preadipocytes and differentiated adipocytes were incubated in the presence of serum from cachectic and non-cachectic (control) cancer patients. Induction of apoptosis and necrosis was examined by cell staining with Hoechst 342 (HO342) and propidium iodide (PI), respectively. Expression of pro- and anti-apoptotic Bcl-2 genes was measured by quantitative RT-PCR. Lipolysis was monitored by measuring the release of radiolabeled fatty acids.Conclusion: Our in vitro data suggest that apoptosis of preadipocytes can be increased by serum-borne factors in cancer cachexia. Death or survival of preadipocytes may depend on the balance of pro- and anti-apoptotic mediators. Further studies of patients with cancer cachexia will be needed to reveal if the disease involves loss of adipose tissue due to apoptosis of preadipocytes. We could not show that serum-borne factors associated with cachexia have a major impact on lipolysis in cultured human adipocytes.Adipobiology 2009; 1: 57-66

    Sequence analysis of bitter taste receptor gene repertoires in different ruminant species

    Get PDF
    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy

    Effect of sex and RYR1 gene mutation on the muscle proteomic profile and main physiological biomarkers in pigs at slaughter

    Get PDF
    Gender and RYR1 gene mutation might have an effect on the muscle metabolic characteristics and on the animal's stress at slaughter, which could influence the process of muscle-to-meat conversion. Forty-eight pigs were distributed in a design including two factors: sex (male/female) and RYR1 genotype (NN/Nn). At slaughter, physiological blood biomarkers and muscle proteome were analyzed and carcass and meat quality traits were registered. Females had higher serum levels of glucose, urea, C-reactive protein "CRP", Pig-MAP and glutation-peroxidase "GPx" and lower levels of lactate, showed faster muscle pH decline and higher meat exudation. RYR1 mutation increased serum creatinine, creatine kinase and CRP and decreased GPx. The proteomic study highlighted significant effects of gender and RYR1 genotype on proteins related to fibre composition, antioxidant defense and post mortem glycolytic pathway, which correlate to differences of meat quality. This study provides interesting information on muscle biomarkers of the ultimate meat quality that are modulated by the animal's individual susceptibility to stress at slaughter.info:eu-repo/semantics/acceptedVersio

    Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy

    Get PDF
    Very limited information on the post-implantatory effects of vitrification has been published till now. We observed in a previous study that the vitrification procedure for the cryopreservation of embryos introduced transcriptomic and proteomic modifications in the rabbit foetal placenta at the middle of gestation. Now, we have conducted a proteomic study to determine whether protein alterations in the foetal placenta induced by the vitrification procedure remain during pregnancy. In this study, we used 2D-DIGE and mass spectrometry (MALDI-TOF-TOF and LC-MS/MS analysis) to identify the protein changes during middle and late stages of gestation (Day 14 and Day 24, respectively) in rabbit foetal placenta. We identified 11 differentially expressed proteins at Day 14 and 13 proteins at Day 24. Data are available via ProteomeXchange with identifiers PXD001840 and PXD001836. In addition, we demonstrate the presence of three proteins, serum albumin, isocitrate dehydrogenase 1 [NADP+], and phosphoglycerate mutase 1, which were altered during pregnancy. We demonstrate the existence of changes in foetal placental protein during pregnancy induced by the vitrification procedure, which brings into question whether vitrification effects observed during foetal development could lead to physiological and metabolic disorders in adulthood. This effect, taken together with other effects reported in the literature, suggests that embryo cryopreservation is not neutral.This work was supported by the Generalitat Valenciana research program (Prometeo 2014/036) and the Spanish Research Projects (CICYT AGL2011-29831-C03-01). M. D. Saenz-de-Juano was supported by a research grant from Generalitat Valenciana (Programa VALI+d, ACIF/2011/254). Nofima AS provided support in the form of salaries for author KH, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the Author Contributions section.Saenz De Juano Ribes, MDLD.; Vicente Antón, JS.; Hollung, K.; Marco Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLoS ONE. 10(4):e0125157-e0125157. https://doi.org/10.1371/journal.pone.0125157Se0125157e012515710

    Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed

    Get PDF
    Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim) helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05) the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim), and the PARK7 (P<0.05) and Grp75 (Hsp70) protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem.publishedVersio

    The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells

    No full text
    Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real- time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.submittedVersio

    Syndecan-4 regulates muscle differentiation and is internalized from the plasma membrane during myogenesis

    Get PDF
    The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.publishedVersio
    corecore