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26

27 ABSTRACT

28 Gender and RYR1 gene mutation might have an effect on the muscle metabolic 

29 characteristics and on the animal’s stress at slaughter, which could influence the process 

30 of muscle-to-meat conversion. Forty-eight pigs were distributed in a design including 

31 two factors: sex (male/female) and RYR1 genotype (NN/Nn). At slaughter, 

32 physiological blood biomarkers and muscle proteome were analysed and carcass and 

33 meat quality traits were registered. Females had higher serum levels of glucose, urea, C-

34 reactive protein “CRP”, Pig-MAP and glutation-peroxidase “GPx” and lower levels of 

35 lactate, showed faster muscle pH decline and higher meat exudation. RYR1 mutation 

36 increased serum creatinine, creatine kinase and CRP and decreased GPx. The proteomic 

37 study highlighted significant effects of gender and RYR1 genotype on proteins related 

38 to fibre composition, antioxidant defense and post mortem glycolytic pathway, which 

39 correlate to differences of meat quality. This study provides interesting information on 

40 muscle biomarkers of the ultimate meat quality that are modulated by the animal’s 

41 individual susceptibility to stress at slaughter.

42

43 Key words: sex, RYR1, pig, biomarker, proteomics, stress
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45 1. Introduction

46 Meat quality should be considered as a multifactorial trait, including technological, 

47 nutritional, sensory, safety and ethical aspects, and is affected by several factors, such as 

48 the genetic animal type, the particularities of the production system, the physiological 

49 response of the animals to the ante mortem treatment and the post mortem conditioning 

50 of the carcasses, among others. 

51 The effect of gender on the pig carcass development has been described in the literature. 

52 In general, males present less accumulation of fat tissues (Gispert et al., 2010), but there 

53 is still controversy about the effect of gender on the incidence of pale, soft and 

54 exudative (PSE) meat, with some studies showing significant effects (Cisneros, Ellis, 

55 McKeith, McCaw, & Fernando, 1996; Channon, Kerr, & Walker, 2004) whereas others 

56 did not (Blanchard, Warkup, Ellis, Willis, & Avery, 1999; Channon, Payne, & Warner, 

57 2000). These differences between experiments could be due in part to different ante 

58 mortem handling conditions, which may influence the animal stress reactions at 

59 slaughter and could have consequences on the ultimate meat quality (Boler et al., 2010; 

60 Hambrecht et al., 2005a,b; Terlouw and Rybarczyk, 2008; D’Eath et al., 2010). 

61 The most usual crossbreds used in Spain includes the Pietrain sire line, presenting in 

62 most cases heterozygosity (Nn) to the mutated RYR1 gene. Mutations in the RYR1 

63 gene have been related to higher susceptibility to stressful conditions and to the 

64 induction of malignant hyperthermia in pigs (Fujii et al., 1991), with detrimental effects 

65 on meat quality (Fàbrega et al., 2004). 

66 Then, pigs of different sex and genetic types may respond differently to pre-slaughter 

67 handling, which may affect the post mortem process of muscle-to-meat conversion. This 

68 process implies complex biochemical mechanisms that are to a large extent dependent 
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69 on the genetic background, the tissue physiological milieu and the animal’s perception 

70 of danger or fear during the slaughter procedure. 

71 To date, there is still no precise definition of animal stress, probably due to the 

72 complexity of different physical and psychological stressful situations, although it can 

73 be described as “the physiological, behavioural and psychological state of the animal 

74 when confronted with, from the animal’s point of view, a potentially threatening 

75 situation” (Terlouw, 2005). 

76 Furthermore, it is important to note that the stress level of the animal depends indirectly 

77 on the situation and directly on the animal’s evaluation of the situation (Terlouw, 2005). 

78 For this reason, meat scientists show increasing interest in the identification of animal-

79 based biomarkers that could be indicators of stress at slaughter and even that could be 

80 used as indirect predictors of the ultimate meat quality. In this field, proteomics is a 

81 promising tool, although its application is still in its infancy and very few studies have 

82 focused on stress-dependent muscle proteome changes (Franco et al., 2015; Oliván et 

83 al., 2016). The objective of this work was to investigate the effect of gender 

84 (Male/Female) and RYR1 genotype (NN/Nn) on physiological, biochemical and 

85 proteomic variables detected in the carcass that might influence the process of meat 

86 quality acquisition and reflect animal’s susceptibility to stress at slaughter.

87

88 2. Materials and Methods

89 This study was approved by the Institutional Animal Care and Use Committee (IACUC) 

90 of IRTA (Monells, Spain). The care and use of animals were performed in accordance 

91 with the European Union Directive 2010/63 on the protection of animals used for 

92 experimental and other scientific purposes (EU, 2010).

93
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94 2.1. Animals and Management procedures

95 Forty-eight crossbred pigs ([Large White x Landrace] sows sired with Pietrain boars) 

96 were randomly selected at a commercial farm and assigned to four groups of 12 pigs 

97 each one. Each group either consisted of NN females, NN entire males, Nn females and 

98 Nn entire males. The RYR1 genotype of the pigs was determined from a hair sample 

99 using PCR (polymerase chain reaction) amplification and digestion with restriction 

100 enzymes as described by Fujii et al. (1991) when pigs aged 5 weeks.

101 At 9 weeks of age, pigs were transported from the commercial farm to the experimental 

102 facilities of IRTA and housed separately by treatment (sex x genotype) in 8 pens (6 pigs 

103 per pen), that is, two replicas per treatment. Pigs were kept in pens (5 x 2.7 m) on fully 

104 slatted floor under natural light conditions and at a constant environmental temperature 

105 of 22 ± 3°C. Each pen was provided with one steel drinker bowl (15 x 16 cm) connected 

106 to a nipple and with a concrete feeder (58 x 34 cm) with four feeding places. Pigs had 

107 water and feed ad libitum. Pigs were inspected daily and no health problems were 

108 observed during the experimental period. At an average weight of 111.4 ±10.5 kg the 

109 pigs were fasted for 8 h before being transported to the experimental slaughterhouse of 

110 IRTA (1.2 km trip), without mixing groups. Animals were gently handled during 

111 transport and at the slaughterhouse to avoid additional stress. There were two slaughter 

112 batches, in two consecutive weeks, including 24 animals per day. Slaughtering started 

113 30 min after the animals arrived at the lairage pens and lasted for 3 h. Pigs were stunned 

114 by exposure to 90 % of carbon dioxide (CO2) by volume in atmospheric air during 3 

115 min and exsanguinated afterwards. 

116

117 2.2. Blood collection
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118 At the slaughterhouse, blood samples were collected at exsanguination from each pig in 

119 10-mL tubes without anticoagulant. Serum were obtained by centrifugation at 2000× g 

120 for 10 min and immediately frozen at −80 °C until analysis.

121

122 2.3. Biochemical and physiological parameters 

123 Metabolites analyzed were:

124 - Markers for glucose utilization: glucose (Hexokinase method, Olympus System 

125 Reagent OSR), lactate (Enzymatic method LOD -Lactate Oxidase-, Olympus System 

126 Reagent OSR).

127 - Markers of nitrogen metabolism: creatinine (Jaffé method, Olympus System Reagent 

128 OSR), urea (GLDH method, Olympus System Reagent OSR), total proteins (Biuret 

129 method, Olympus System Reagent OSR).

130 - Lipid metabolism markers: triglycerides (GPO-PAP method, Olympus System 

131 Reagent OSR), total cholesterol (CHOP-PAP method, Olympus System Reagent OSR), 

132 HDL-cholesterol (HDL-chol, Immunoinhibition method, Olympus System Reagent 

133 OSR), LDL-cholesterol (LDL-chol, Selective protection method, Olympus System 

134 Reagent OSR), non-esterified fatty acids (NEFAs, NEFA-C reagent, Wako Chemicals) 

135 and 3-hydroxybutyrate (BHB, Ranbut reagent, Randox Laboratories, Ltd).

136 - Acute phase proteins “APPs” as inflammatory markers: haptoglobin (Phase 

137 Haptoglobin, Tridelta Ltd), C-reactive protein (CRP, immunoturbidimetric method, 

138 Olympus Systems Reagent) and Pig-MAP (ELISA, PigChamp ProEuropa).

139 - Skeletal muscle marker: creatine kinase (CK, IFCC method, Olympus System Reagent 

140 OSR).

141 - Oxidative stress marker: glutathione peroxidase GPx (Cumene Hydroperoxyde 

142 method, Ransel, Randox Laboratories Ltd).

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

143 - Stress hormone: cortisol (ELISA, DRG Diagnostics, Germany).

144 All parameters were determined by spectrophotometric techniques in the analyzer 

145 Olympus AU400, with the exception of Pig-MAP and cortisol, which were determined 

146 by ELISA.

147

148 2.4. Carcass measurements and meat sampling

149 The skin lesions in each pig were assessed using the Welfare Quality® protocol 

150 (Dalmau, Temple, Rodríguez, Llonch, & Velarde, 2009) considering 5 regions (ears, 

151 front, middle, hind-quarters and legs) in one side of the carcass after scalding. Values of 

152 0 (<2 lesions in all regions), 1 (2-10 lesions in at least one region) and 2 (>10 lesions in 

153 at least one region) were used by a trained observer at the slaughter line.

154 The left side of each carcass was used to assess meat quality. Muscle pH was measured 

155 at 45 min (pH45) and at 24 h (pH24) post mortem on the longissimus thoracis (LT) 

156 muscle, using a Crison (Hach Lange S.L.U., Spain) portable meter equipped with a 

157 xerolyt electrode. Electrical conductivity (EC) was also measured at 24 h post mortem 

158 on the same location using a Pork Quality Meter (PQM-I, INTEK Aichach, Germany). 

159 Meat samples (20 g) were taken after slaughter (15-20 min post mortem) from the LT 

160 muscle of each pig at the last rib level for analysis of electrophoretic protein profile of 

161 sarcoplasmic extracts by SDS-PAGE. These muscle samples were immediately frozen 

162 in liquid nitrogen and stored at -80ºC until analyzed. 

163 Meat color was determined using a colorimeter Minolta CR-400 (Konica Minolta 

164 Holdings, Inc, Japan) measuring in the CIELAB space (L*, a*, b*), at 24 h post mortem 

165 on the exposed cut surface of the LT muscle (last rib) after 15 min blooming. 

166 Meat drip loss (% exudates) was determined by duplicate on 25 mm diameter fresh 

167 samples taken from the LT muscle at 24 h post mortem, and placed on a special 
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168 container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4ºC, 

169 obtaining the drip loss percentage by gravimetry, according to the method described by 

170 Rasmussen and Andersson (1996). 

171 Instrumental texture was determined in LT samples by using the Warner Bratzler test, 

172 following the procedures described in Ampuero-Kragten and Gil (2015). Samples were 

173 vacuum packaged at 24 h post mortem and stored at 4ºC, and they were frozen (-20ºC) 

174 after 1, 3 and 5 d aging to allow muscle tenderization. Each sample was thawed 

175 overnight at 4ºC, cooked in an oven until a core temperature of 71ºC, and then 5 

176 subsamples were obtained by using a perforating punch. These subsamples were 

177 individually analyzed for instrumental toughness (maximum shear force, in kg) with the 

178 TA.XT plus Texture Analyzer (Stable Microsystems, Haslemere, UK) and the mean 

179 value for each animal was calculated.

180

181 2.5. Sarcoplasmic Protein Extraction and Electrophoresis

182 The sarcoplasmic protein fraction, which contains most of the enzymes of the glycolytic 

183 pathway and other metabolic proteins (Hollung et al., 2007), were extracted from each 

184 individual muscle sample (one per animal), taken immediately after slaughter, and 

185 quantified following the method described by Jia et al. (2009). A total of 600 mg of 

186 muscle tissue was dissected and homogenized in 2 mL of Tris-EDTA-Sucrose “TES” 

187 buffer (10 mM Tris [pH7.6], 1 mM EDTA, and 0.25 M sucrose), using a Polytron 

188 PT1200 E (Kinematica Inc., Luzern, Switzerland) three times for 15 s at maximum 

189 speed. The homogenate was centrifuged (30 min at 8,800 x g) at 4°C to remove TES-

190 insoluble proteins. Protein concentrations were measured with a commercial kit at 760 

191 nm (RC DC Protein Assay, Bio-Rad Laboratories, Hercules, CA) in a 
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192 spectrophotometer Lambda 35 UV/VIS (Perkin Elmer, Massachusetts, USA) using 

193 bovine serum albumin as standard.

194 Then, 120µg of proteins were denatured by mixing with sample buffer (62.5 mM 

195 Tris/HCl pH 6.8, 2% SDS, 20% glycerol, 5% mercaptoethanol, 0.025% of bromophenol 

196 blue) and heated at 95ºC for 5 min, and loaded to 1mm dual vertical slab gels (Xi 

197 Protean II, Bio-Rad Laboratories Inc., CA, USA) for one-dimensional sodium 

198 dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), according to the 

199 procedure described by Sierra et al. (2012). The resolving gel contained 11% and the 

200 stacking gel 4% of 30% (wt/vol) acrylamide: bisacrylamide and a mixture of Tris/HCl 

201 (375 mM) pH 8.8, milli-Q water, SDS 10% (wt/vol), ammonium persulphate 10% 

202 (wt/vol), and 0.1% TEMED. Pre-stained molecular weight standards (Precision Plus 

203 Protein All Blue Standards, Bio-Rad Laboratories Inc., Hercules, CA) were also run on 

204 each gel to determine protein band molecular weights. Gels (20 cm x 20 cm size) were 

205 run at 80 V for 2 h, 160 V for 2 h, 250V for 10 h and 500 V for 20 min (Universal 

206 PowerPack 500, Bio-Rad), stained in a mixture of 30% (vol/vol) methanol, 10% 

207 (vol/vol) acetic acid and 0.01% (wt/vol) Coomassie Brilliant Blue R-250 and destained 

208 using a mixture of 40% (vol/vol) methanol and 10% (vol/vol) acetic acid. 

209 Three gels were produced per muscle sample and the mean value was calculated for 

210 each animal with image analysis techniques. 

211

212 2.6. Image Analysis and protein identification by peptide mass fingerprint

213 Stained gel images were captured using the UMAX ImageScanner (Amersham 

214 Biosciences). SDS-PAGE densitometry analysis and band quantitation were carried out 

215 using the ImageQuant TL software by means of its 1D gel analysis tool (version 7.0, 

216 GEHealthcare, Buckinghamshire, UK). To account for slight variations in protein 
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217 loading, the density protein bands was expressed as relative abundance (normalized 

218 volume) and expressed in arbitrary units.

219 Protein bands were manually excised from gels and sent for identification to the 

220 proteomics laboratory of Inbiotec S.L. (León, Spain). The proteins were digested 

221 following the method of Havlis et al. (2003) and processed for further analysis as 

222 indicated by Jami, Barreiro, García-Estrada, & Martín (2010). The samples were 

223 analyzed with a 4800 Proteomics Analyzer matrix-assisted laser desorption ionization 

224 time-of-flight (MALDI-TOF/TOF) mass spectrometer (ABSciex, MA, USA). A 4700 

225 proteomics analyzer calibration mixture (Cal Mix 5, ABSciex) was used as external 

226 calibration. All MS spectra were internally calibrated using peptides from the trypsin 

227 digestion. The analysis by MALDI-TOF/TOF mass spectrometry produced peptide 

228 mass fingerprints, and the peptides observed (up to 65 peptides per spot) were collected 

229 and represented as a list of monoisotopic molecular weights with a signal to noise (S/N) 

230 ratio greater than 20 using the 4000 Series Explorer v3.5.3 software (ABSciex). All 

231 known contaminant ions (trypsin- and keratin- derived peptides) were excluded for later 

232 MS/MS analysis. Hence, from each MS spectra, the 10 most intensive precursors with a 

233 S/N greater than 20 were selected for MS/MS analyses with CID (atmospheric gas was 

234 used) in 2-kV ion reflector mode and precursor mass windows of ±7 Da. The default 

235 calibration was optimized for the MS/MS spectra. For protein identification, Mascot 

236 Generic Files combining MS and MS/MS spectra were automatically created and used 

237 to interrogate a non-redundant protein database using a local license of Mascot v 2.2 

238 from Matrix Science through the Global Protein Server v 3.6 (ABSciex). The search 

239 parameters for peptide mass fingerprints and tandem MS spectra obtained were set as 

240 follows: i) NCBInr (2012.09.13) sequence databases were used; ii) taxonomy: All 

241 entries (20363435 sequences, 6986060206 residues); iii) fixed and variable 
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242 modifications were considered (Cys as S carbamidomethyl derivative and Met as 

243 oxidized methionine); iv) one missed cleavage site was allowed; v) precursor tolerance 

244 was 100 parts per million and MS/MS fragment tolerance was 0.3 Da; vi) peptide 

245 charge: 1+; and vii) the algorithm was set to use trypsin as the enzyme. Protein 

246 candidates produced by this combined peptide mass fingerprinting/tandem MS search 

247 were considered valid when the global Mascot score was greater than 85 with a 

248 significance level of P < 0.05.

249

250 2.7. Statistical Analysis

251 The effect of sex (M/F) and genotype (NN/Nn) on carcass and meat quality traits, blood 

252 biochemical and muscle proteomic variables was analyzed by Analysis of Variance 

253 (ANOVA) using the General Linear Model (GLM) procedure of SPSS (v 15.0 2006, 

254 SPSS Inc, Chicago, USA). The model included sex, genotype and its interaction as 

255 fixed factors and slaughter day (batch) as random factor. When the interaction was 

256 significant, the differences between the four treatments (M-NN, M-Nn, F-NN, F-Nn) 

257 were analysed by the Tukey post-hoc test. The post mortem evolution of meat toughness 

258 (Warner Bratzler maximum shear force) was analysed by GLM including sex, genotype, 

259 aging time and their interactions as fixed factors and animal as random factor. Bivariate 

260 correlations were calculated using Pearson’s correlation coefficient.

261 Furthermore, multivariate analysis (PCA) was performed in order to study the 

262 relationships between meat quality and physiological, biochemical and proteomic 

263 variables obtained for every animal studied, by using XLStat software (XLStat 2013, 

264 Addinsoft Inc, Paris, France). The Kaiser-Meyer-Olkin test was performed in order to 

265 measure sampling adequacy for each variable in the model, and only variables with 
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266 KMO over 0.6 were selected. The overall KMO measure of the performed PCA was 

267 0.725.

268

269 3. Results and discussion

270 3.1. Carcass and meat quality

271 Female pigs showed lower muscle pH than entire males (Table 1), with significant 

272 differences at 45 min post mortem (P = 0.002). This agrees with D’Souza and Mullan 

273 (2002) and D’Eath et al. (2010), who found lower pH (P = 0.006) in the loin muscle of 

274 females compared with castrated pigs. These differences may be in part due to 

275 physiological and metabolic differences in the cell response, indicating in some extent 

276 higher susceptibility of females to stress at slaughter. This is a controversial issue, as it 

277 has been postulated that entire male pigs are more susceptible to stress, because they 

278 show more aggressive behavior than females and castrates (Fàbrega et al., 2010), while 

279 in cattle Tarrant (1990) showed that females and young animals are more susceptible to 

280 stress compared to males and older animals. 

281 When looking to the effect of genotype, we found that the post mortem muscle pH 

282 decline was faster in animals heterozygous for the RYR1 mutation (Nn), that showed 

283 significantly (P < 0.001) lower pH at 45 min post mortem, while the ultimate pH did not 

284 differ between genotypes (Table 1), so the pH amplitude (45 min - 24 h) was lower in 

285 the Nn group (0.76 vs 1.03 for Nn and NN, respectively, P < 0.05). 

286 Furthermore, Nn animals produced meat with higher values of electrical conductivity 

287 (EC) (P < 0.05) and also higher drip loss (P < 0.001). Thus, the pH amplitude correlated 

288 negatively with EC (r=-0.702, P < 0.001) and drip loss (r=-0.726, P < 0.001) and EC 

289 and drip loss showed a positive and significant correlation (r= 0.858, P < 0.001). These 

290 differences seem to indicate post mortem muscle metabolic differences due to the RYR1 
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291 mutation but also might be modulated by a higher susceptibility to stress at slaughter in 

292 Nn pigs, which have more intense reaction to stress than NN animals (Roberts et al., 

293 1998). This effect could produce higher leakage of calcium to the cytoplasm and the 

294 accompanied calcium related effects (e.g. muscle contraction, stimulation of the muscle 

295 metabolism) resulting in a rapid reduction of the pH - due to the lactic acidosis - and an 

296 increase of the electrical conductivity, as shown in previous reports (Depreux, Grant, & 

297 Gerrard, 2002; Fernandez, Neyraud, Astruc, & Sante, 2002; Krischek, Natter, Wigger, 

298 & Wicke, 2011; Shen, Underwood, Means, McCormick, & Du, 2007). 

299 Consequences of this calcium-related metabolic changes are often increasing drip loss 

300 and higher meat lightness (L*), although the results found in the literature depend on the 

301 particularities of every experiment (stress level and duration, animal’s evaluation of the 

302 situation), the intrinsic characteristics of the muscle (glycogen reserves, antioxidant 

303 status) and the resulting post mortem rate of pH decline and protein denaturation. In our 

304 work, the component L* did not show any significance for the analyzed factors, which 

305 is in accordance with some reports (Channon et al., 2000; D’Souza, Dunshea, Warner, 

306 & Leury, 1998; Hambrecht et al., 2005a) but contrary to others (Terlouw and Rybarczyk 

307 2008; Boler et al., 2008; Edwards et al., 2010; Dokmanovic et al., 2015) which clearly 

308 reflects the complexity of the processes involved. Nevertheless, other meat color traits, 

309 such as a*, was significantly reduced in the Nn genotype (P < 0.01), which could be 

310 result of higher post mortem protein denaturation and/or proteolysis (Kazemi, Ngadi 

311 and Gariépy et al., 2011). This effect was significantly higher in males than in females, 

312 and the same effect was observed for b* coordinate, for this reason there was a 

313 significant interaction of sex and genotype on meat colour variables a* and b* (Table 

314 1). 
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315 Another key quality trait, such as meat toughness, was significantly affected by RYR1 

316 genotype (P < 0.05), with Nn animals exhibiting tougher meat (higher shear force) 

317 along the process of meat aging (1 to 5 d post mortem, see Fig. 1), which agrees with 

318 previous reports that described higher shear force and less tender meat in Nn than in 

319 halothane free (NN) pigs (Channon et al., 2000; Fernández et al., 2002; Van den 

320 Maagdenberg, Stinckens, Lefaucheur, Buys, & De Smet, 2008). 

321 Furthermore, our results indicate increasing differences of shear force between 

322 genotypes as the process of meat tenderization progressed (Fig. 1), although the 

323 interaction between RYR1 genotype and aging time was not significant (P = 0.737). 

324 Obviously, meat tenderness tended to increase as aging time increased in all meat types, 

325 but the effect of the RYR1 mutation on meat toughness is probably related to 

326 differences in the post mortem metabolism. All data recorded in this work (faster pH 

327 decline, higher drip loss) indicate a fast post mortem metabolism in the muscle of Nn 

328 pigs, confirmed in previous works, such as the one by Cheah, Cheah, & Krausgrill 

329 (1995), who observed higher sarcoplasmic levels of calcium in vivo in the muscle from 

330 Nn animals in contrast with NN, possibly causing a faster than normal rate of post 

331 mortem muscle glycolysis in these pigs. In the same way, Depreux et al. (2002) 

332 described a higher proportion of glycolytic fibres in the muscle of Nn genotype than 

333 NN, expecting a more rapid post mortem pH decrease. This could imply a higher rate of 

334 exhaustion of enzymes implicated in meat tenderization and therefore shorter 

335 tenderization process. This agrees with previous histological and histochemical 

336 investigations that have revealed increased fibre diameter and increased glycolytic 

337 metabolic potential in the LT muscle of pigs with the RYR1 mutation, due to higher 

338 proportion of the fast twitch glycolytic fibre type and lower of the slow twitch oxidative 

339 type (Fiedler et al., 1999).
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340

341 3.2. Blood biochemical variables

342 Sex affected several blood metabolites at slaughter (Table 2). Then, females showed 

343 higher levels than males of glucose (P < 0.05), urea (P < 0.001), CRP (P < 0.05), Pig-

344 MAP (P < 0.01) and GPx (P < 0.01) and lower of lactate (P < 0.05).

345 Higher glucose level may indicate a higher stress response of females at slaughter, as it 

346 is known that during psychological stress the organism feels threatened and gets ready 

347 to respond to protect itself, then the glucose level in plasma increases due to the 

348 secretion of hormones that leads to an increase on the hepatic glycogen breakdown and 

349 gluconeogenesis (Becerril-Herrera et al., 2007; Mota-Rojas et al., 2009). There are a 

350 number of studies that describe the increase of serum or plasma levels in glucose as a 

351 consequence of stress in different animal species (see Becerril-Herrera et al., 2007) but 

352 the effect of sex on the energetic profile is not clear as it may be affected by hormonal 

353 differences. Our results are in accordance with the report by Mota-Roja et al. (2012) 

354 who found increased concentration of glucose at exsanguinations in female pigs 

355 subjected to acute stress, when compared to barrows and entire males. 

356 Our data are also consistent with previous studies describing increased levels of APPs 

357 such as CRP and Pig-MAP in plasma as consequence of stress in pigs (Murata 2007; 

358 Piñeiro et al., 2007a, 2007b; Saco et al., 2003; Salamano et al., 2008). 

359 When looking to differences of urea serum content within groups (Fig. 2a), it is 

360 worthwhile to mention that increased urea concentration in females was consistent in 

361 both NN and Nn groups, suggesting a faster catabolism of proteins, probably associated 

362 to the above mentioned higher susceptibility of females to pre-slaughter stress.

363 The effect of the RYR1 genotype on variables such as creatinine (P < 0.05), CRP (P < 

364 0.05), Pig-MAP (P = 0.05), CK (P < 0.001) and GPx (P < 0.01) was significant (Table 
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365 2). Heterozygous (Nn) pigs showed higher serum CK activity, which suggests increased 

366 muscle damage, and higher CRP concentration, that may indicate higher stress level and 

367 subsequent inflammation. To date, some APPs have been proposed as indicators of 

368 animal stress (Saco et al., 2003; Piñeiro et al., 2007a; Salamano et al., 2008; Marco-

369 Ramell et al., 2011; Marco-Ramell et al., 2016), although the effect of stress on their 

370 serum concentration remains controversial, since it is difficult to distinguish it from the 

371 effect of trauma or subclinical infections.

372 On the other side, the higher GPx activity in homozygous (NN), but especially in 

373 females (there was significant S*G interaction, P < 0.01) suggests more potent 

374 antioxidant defenses in females, probably due to estrogen influence (Fig. 2b).

375

376 3.3. Muscle proteins

377 A total of 26 protein bands (201 to 20 kDa) were differentiated by SDS-PAGE gels in 

378 the muscle sarcoplasmic extracts, as shown in Figure 3, where band names are denoted 

379 by S of “sarcoplasmic” protein, followed by a number (1 to 26). 

380 Table 3 gives the identification of protein bands with differential expression between 

381 treatments and Table 4 shows the effect of sex and genotype and its interaction on the 

382 abundance of these proteins. 

383 3.3.1. Effect of sex

384 Myosin-binding protein C fast type, “MyBP-C” was overrepresented (P < 0.05) in the 

385 muscle of females. MyBP-C belongs to the myosin-binding protein C family, including 

386 fast- and slow-type isoforms, each of which is a myosin-associated protein found in the 

387 cross-bridge-bearing zone (C region) of sarcomeric A bands, where interaction between 

388 the thick and thin filaments occurs. Both structural and regulatory roles have been 
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389 proposed for MyBP-C, as it may modulate muscle contraction (Oakley, Hambly, Curmi, 

390 & Brown, 2004).

391 The presence of S6 (muscle-6-phosphofructokinase “PFK-M”) was also significantly 

392 affected by gender, with lower values in the muscle of females. PFK-M is the main rate-

393 controlling enzyme of glycolysis, which catalyzes the transfer of a phosphoryl group 

394 from ATP to fructose-6-phosphate to yield ADP and fructose-1,6-bisphosphate. This 

395 enzyme is tightly regulated and responds to diverse molecules and signals by changing 

396 its catalytic activity and behaviour and is one of the few examples in which inhibition 

397 by the substrate occurs, as ATP may inhibit PFK at different levels, depending on the 

398 tissue metabolic state (Sola-Penna, Da Silva, Coelho, Marinho-Carvalho, & Zancan, 

399 2010). Furthermore, lactate potentiate the inhibitory effects of ATP on PFK (Leite, Da 

400 Silva, Coelho, Zancan, & Sola-Penna, 2007). Then in our study underexpression of 

401 PFK-M in the muscle of females, that showed faster post mortem acidification, could be 

402 potentiated by inhibition due to lactate, although we can not discard a possible lower 

403 inherent PFK-M concentration in the muscle of females due to physiological differences 

404 between males and females. 

405 3.3.2. Effect of genotype

406 Genotype affected the presence of four peptide bands, thus producing lower presence of 

407 S2 (MyBP-C, P < 0.05), S18 (glyceraldehyde-3-phosphate dehydrogenase “GAPDH”, P 

408 < 0.01) and S24 (containing two proteins: carbonic anhydrase “CAIII” and 

409 phosphoglycerate mutase-2 “PGM2”, P < 0.05) and higher of S23 (ENO3) in the 

410 muscle of Nn pigs (Table 4). 

411 Changes of MyBP-C, which corresponds to the muscle fibre structure, could be due to 

412 the above mentioned differences of fibre type composition between RYR1 genotypes, 

413 while the other significant changes affected to metabolic enzymes (GAPDH, CAIII 
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414 and/or PGM2, ENO3) that showed significant correlation with the rate of post mortem 

415 muscle pH decline (pH-amplitude), being this relationship positive for GAPDH 

416 (r=0.540, p < 0.01) and CAIII/PGM2 (r=0.410, P < 0.05) and negative for ENO3 (r=-

417 0.541, P < 0.006). This agrees with results from Gagaoua et al. (2015) who found 

418 negative relationship between ENO3 and pH decline in beef.

419 Lower GAPDH in the muscle of Nn pigs indicate lower glycolysis, which could be 

420 produced by an earlier depletion of muscle metabolites (glycogen) due to stress, as 

421 found by Fernandez et al. (2002). It is worthwhile to mention that GAPDH has recently 

422 been implicated in different non-metabolic processes, including transcription activation 

423 and initiation of apoptosis (Tarze et al., 2007). Moreover, GAPDH may act as a 

424 reversible metabolic switch under oxidative stress (Agarwal et al., 2012). 

425 With respect to ENO3, it is a glycolytic enzyme that has been associated in beef with a 

426 faster post mortem muscle energy metabolism resulting in a faster pH decline (Gagaoua 

427 et al., 2015), and also has been correlated to beef colour stability (Gagaoua et al., 2015; 

428 Gagaoua, Terlouw, & Picard, 2017; Picard, Gagaoua, & Hollung, 2017) and to meat 

429 tenderization (Lametsch et al., 2003; Polati et al., 2012). Furthermore, ENO3 has been 

430 described as a hypoxic stress protein providing protection of cells by increasing 

431 anaerobic metabolism (Pancholi, 2001; Wulff, Jokumsen, Højrup, & Jessen, 2012). 

432 Then, it could be expected to find increased ENO3 in the muscle of pigs suffering 

433 higher stress at slaughter, that is, those from the Nn genotype. 

434 The interpretation of changes found in the protein band S24 become difficult due to the 

435 co-migration of two proteins (CAIII and PGM2) and the resultant joint quantification, 

436 which is one of the difficulties of using 1D electrophoresis for protein separation. Band 

437 S24 showed significantly (P<0.05) lower abundance in the muscle extracts of Nn 

438 animals, and this difference was consistent regardless of sex (males and females), but 
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439 we could not dilucidate if both proteins (CAIII and PGM2) or only one of them had 

440 lower presence in Nn pigs. Anyway, lower CAIII (which functions as oxyradical 

441 scavenger and thus protects cells from oxidative damage) could be expected in the 

442 muscle of Nn pigs and would reflect lower level of the antioxidant defense, which 

443 agrees with the findings of Laville et al. (2009) who described reduced abundance of 

444 antioxidant proteins in the SM muscle of pigs with RYR1 mutation (nn genotype) 

445 compared with NN pigs, probably because the nn muscle was less oxidative and in 

446 consequence presented less antioxidative and repair capacities. The growing interest of 

447 meat scientist for the role of the balance between oxidative stress and antioxidant 

448 defense in the post mortem muscle is more than evident, and gives significant 

449 correlations with ultimate meat quality traits such as meat colour and tenderness 

450 (Laville et al., 2007, 2009; Jia et al., 2009; Ouali et al., 2013; Gagaoua et al., 2015, 

451 2017; te Pas et al., 2017).

452 The other protein found in band S24 was PGM2, which catalyzes the interconversion of 

453 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic pathway and therefore it 

454 has a role of regulation of the energy balance and in the glycogen metabolism and 

455 glycolysis of the skeletal muscle (Fontanesi et al., 2008). This protein is encoded by a 

456 gene localized on porcine chromosome 18 (Fontanesi, Davoli, Nanni Costa, Scotti, & 

457 Russo, 2003) in a region where quantitative trait loci for drip loss, meat colour, fat 

458 deposition, lean content, muscle fiber diameter and carcass quality have been identified, 

459 and it has been described a significant association between PGM2 and drip loss in pigs 

460 (Fontanesi et al., 2003), so a lower PGM2 abundance in the muscle of Nn pigs, that 

461 showed higher drip loss, would be expected. 

462 As a whole, the deficiency of GAPDH, PGM2 and/or CAIII and the increased amount 

463 of ENO3 in the muscle of Nn pigs after slaughter reflects an impairment of the 
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464 glycolysis function and a higher defense of the muscle cell to oxidative stress, which 

465 could be related to metabolic changes due to the RYR1 mutation, that causes a 

466 dysregulation of the calcium homeostasis and lead to neuromuscular disorders (Treves 

467 et al, 2005) and even can affect immunological and neuroendocrine response of pigs to 

468 stress (Ciepielewski et al., 2016). In our study we could not quantify changes in the 

469 abundance of muscle proteins involved in calcium homeostasis, such as sarcalumenin or 

470 calsequestrin-1, that were not separated in the 1D SDS-PAGE gels. These proteins have 

471 recently been detected by 2D-electrophoresis in mice muscle by Picard et al. (2016) 

472 who found that its abundance in the Tibialis anterior muscle (fast glycolytic) increased 

473 in the absence of Hsp27 (heat shock protein that has been described as beef tenderness 

474 biomarker, by the group of Picard).

475

476 3.3.3. Interaction of sex and genotype

477 The statistical analysis showed that there was a significant interaction between sex and 

478 genotype for two muscle proteins: S9 (albumin) and S26 (AK-1). That is, in this study, 

479 males tended to show higher muscle albumin expression than females, which could 

480 reflect physiological differences related to the function of albumin in the skeletal 

481 muscle, where it serves as a temporary amino acid storage site, maintains osmotic 

482 pressure and acts as a transporter for free fatty acids (Ellmerer et al., 2000), but the 

483 presence of the RYR1 mutation increased the albumin expression in the muscle of 

484 females and decreased it in males. Regarding AK-1, which catalyzes the reversible 

485 transfer of the terminal phosphate group between ATP and AMP and is a key enzyme in 

486 the muscle energetic homeostasis, it showed slightly higher level in Nn genotypes, 

487 which was more evident in males than in females, then showing significant interaction 

488 between sex and genotype. Our results show lower AK-1 level in Nn females, which 
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489 could be related with alterations of the muscle homeostasis as a result of higher stress 

490 response at slaughter, which is in agreement with a previous report from our group that 

491 showed that higher pre-slaughter stress produced lower presence of AK-1 in the post 

492 mortem muscle in pigs when mixed with unfamiliar animals (Oliván et al., 2016).

493

494 3.4. Multivariate analysis

495 Multivariate analysis was applied in order to obtain a synthetic assessment of the 

496 complex relationships between the variables best suited for factor analysis (KMO>0.6), 

497 that were: three meat quality traits (pH45, EC and drip), four serum metabolites 

498 (glucose, creatinine, CK and GPx) and three protein bands containing muscle proteins 

499 of the energy metabolism and antioxidant defense (GAPDH, ENO3 and CAIII/PGM2). 

500 The biplot obtained via PCA (Fig. 4) showed that PC1 and PC2 explained 62 % of the 

501 variability in the data. 

502 The first principal component (PC1) distinguished in the positive side main variables 

503 related to poor meat quality: drip loss, EC and meat toughness (shear force at 5 days 

504 aging (WBSF-5d). Other variables with high loadings for PC1 were serum creatinine 

505 and CK, which indicate higher muscle damage at slaughter, and ENO3, a muscle protein 

506 that has been related to faster energy metabolism and faster pH decline in beef 

507 (Gagaoua et al., 2015) and also to hypoxic stress (Sedoris et al., 2010).

508 Furthermore, carcass temperature showed a positive correlation with PC1, which all 

509 together clearly indicates that the positive side of PC1 merged variables related to stress 

510 at slaughter. These characteristics corresponded to animals of the Nn genotype, mainly 

511 females, whose mean score showed high positive correlation to PC1 (Figure 4). By 

512 contrast, the negative side of the PC1 grouped meat variables indicating normal post 

513 mortem pH decline (higher pH at 45min), normal muscle glycolytic metabolism (higher 
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514 muscle GAPDH and PGM2 at slaughter) and higher muscle antioxidant defense 

515 (CAIII), that is, those variables that in general contribute to an appropriate process of 

516 muscle-to-meat conversion, being the NN genotype (males “M-NN” and females “F-

517 NN”) represented nearby. 

518 The second PC aimed to distinguish in the positive side animals showing higher blood 

519 levels of glucose and GPx, that is, variables indicating stress, inflammation and 

520 antioxidant response at slaughter, which corresponded mainly to Females of the NN 

521 genotype.

522 Overall, these results show that the RYR1 mutation in heterozygosity contributed to 

523 reduce the ultimate meat quality (higher meat exudation and toughness) and that in 

524 some extent its effect was modulated by a higher stress response of Nn individuals at 

525 slaughter (higher serum level of creatinine and creatin kinase, compared to NN pigs). 

526 On the other hand, females showed faster muscle post mortem pH decline and produced 

527 more exudative meat than males, and also showed blood biochemical parameters at 

528 slaughter that seem to reflect a physiological response to stress (higher glucose and 

529 GPx). 

530 Furthermore, from a proteomic perspective, these results allowed the identification of 

531 key proteins involved in the post mortem glycolytic pathway (GAPDH, PGM2, ENO3) 

532 and the antioxidant defense (CAIII) of the muscle that contribute to the process of meat 

533 quality acquisition and are influenced by pre-slaughter stress. These proteins have a 

534 relevant role in the post mortem muscle metabolism and most of them have already 

535 been identified as biomarkers of meat quality and animal stress (Laville et al., 2007, 

536 2009; Guillemin, Bonnet, Jurie, & Picard, 2011; Gagaoua et al., 2015, 2017; Oliván et 

537 al., 2016). 
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538 These results contribute to progress towards the comprehensive identification of 

539 proteins linked to the process of meat quality acquisition, being ultimately modulated by 

540 the animal’s stress reaction at slaughter. Knowing the biological mechanism underlying 

541 this process opens up the possibility of monitoring and predicting the resulting changes. 

542 Once this is known, these potential protein biomarkers must follow a process of 

543 evaluation and validation (Naylor, 2003; Te Pas, Hoekman & Smits, 2011; Picard & 

544 Gagaoua, 2017), so further research is needed on a larger data set.

545

546 4. Conclusions

547 Pork quality development is largely governed by the rate and extent of post mortem 

548 muscle metabolism, which is affected by animal factors like sex and RYR1 genotype, 

549 with influence as well in the modulation of the animal’s individual susceptibility to pre-

550 slaughter stress.

551 The results of this study showed that the sex and the RYR1 genotype affected several 

552 blood biochemical parameters at slaughter and some muscle enzymes with key role on 

553 the subsequent process of muscle-to-meat conversion, showing Nn females more 

554 susceptibility to stress, with detrimental effect on meat quality. 

555 These differences may be monitored by protein biomarkers related to the fibre 

556 composition, the post mortem glycolytic pathway and the antioxidant defense of the 

557 muscle. However, it is worthwhile to mention that the complex nature of the processes 

558 that underlie the post mortem meat quality development and the high diversity of factors 

559 that may influence the animal’s susceptibility to stress at slaughter makes difficult to 

560 find universal biomarkers. Then, more research is needed in order to apply combined 

561 “omics” techniques that allow the identification of key protein biomarkers and to 

562 validate them in different breeds and management systems.
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892

893 Table 1 Least squares means and the effect of sex (S) and RYR1 genotype (G) and its 

894 interaction (S*G) on carcass and meat quality traits.

895
Sex Male Female P-value
Genotype NN Nn NN Nn SEM1 S G S*G
Temperature (ºC) 37.37 37.38 37.10 39.47 1.386 0.7173 0.1332 0.2221
Skin lesions 0.33 0.67 0.5 0.33 0.552 0.6034 0.6034 1.000
pH45 6.57 6.32 6.42 6.13 0.171 0.0021 <.0001 0.3318
pH24 5.50 5.50 5.44 5.43 0.070 0.2909 0.2558 0.6532
pH amplitude (pH45-pH24) 1.075 0.820 0.987 0.703 0.094 0.2881 0.0102 0.8824
EC2 (mS) 4.11 6.12 5.94 7.20 2.099 0.1088 0.0144 0.3219
Drip loss (%) 4.48 5.48 4.92 7.21 1.679 0.1887 <.0001 0.9829
L* 50.54 49.16 49.47 50.92 2.044 0.5354 0.553 0.0758
a* 6.97c 6.33a 6.77b 6.56b 0.692 0.8748 0.0064 0.0403
b* 2.18b 1.54a 2.05b 2.24b 0.734 0.7904 0.109 0.015
WBSF3-1d 4.91 5.10 4.17 5.19 0.920 0.3216 0.0326 0.9375
WBSF3-3d 4.22 4.22 3.72 4.54 0.706 0.655 0.0029 0.8014
WBSF3-5d 3.80 4.01 3.60 4.70 0.598 0.5445 0.0005 0.5598

896 Means in the same row followed by different superscripts are significantly different at P < 0.05.
897 1SEM: standard error of means
898 2EC: electrical conductivity
899 3WBSF: Warner-Braztler shear force at 1, 3 or 5 days post mortem
900
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901

902 Table 2. Least squares means and the effect of sex (S) and RYR1 genotype (G) and its 

903 interaction (S*G) on serum biochemical variables at slaughter.

904
Sex Male Female P-value
Genotype NN Nn NN Nn SEM1 S G S*G
Glucose, mg/dL 286.25 330.51 366.91 349.62 14.676 0.019 0.523 0.138
Lactate, mmol/L 10.61 10.37 8.53 9.35 0.432 0.013 0.622 0.377
Creatinine, mg/dL 1.88 2.03 2.00 2.06 0.034 0.123 0.035 0.329
Urea, mg/dL 27.08 25.31 37.90 32.69 1.473 <0.001 0.097 0.409
Total proteins, g/dL 6.84 6.66 6.85 6.82 0.066 0.396 0.258 0.434
Triglycerids, mg/dL 47.92 51.75 49.64 55.25 2.283 0.401 0.155 0.806
Cholesterol, mg/dL 90.33 87.43 92.15 95.64 1.811 0.053 0.919 0.219
HDL-chol2, mmol/L 1.14 1.14 1.16 1.21 0.017 0.072 0.238 0.238
LDL-chol3, mmol/L 1.35 1.26 1.32 1.33 0.031 0.602 0.304 0.288
NEFAs4, mmol/L 0.080 0.082 0.085 0.067 0.008 0.657 0.426 0.342
ΒHB5, mmol/L 0.072 0.085 0.081 0.077 0.005 0.933 0.511 0.279
Haptoglobin, mg/mL 0.174 0.408 0.523 0.474 0.085 0.091 0.437 0.245
CRP6, µg/mL 4.35 10.05 10.56 12.35 1.246 0.018 0.039 0.261
Pig-MAP, mg/mL 0.62 0.58 0.96 0.72 0.049 0.001 0.050 0.163
CK7, U/L 1844.58 3024.42 1920.36 4368.08 277.388 0.065 <0.001 0.125
GPx8, U/L 8321.42a 8855.58a 14481.55b 8670.33a 683.073 0.003 0.009 0.002
Cortisol, ng/mL 39.03 38.95 30.92 43.37 2.869 0.670 0.139 0.134

905 Means in the same row followed by different superscripts are significantly different at P < 0.05.
906 1SEM: standard error of means
907 2 HDL-chol: High density lipoproteins-cholesterol 
908 3 LDL-chol: High density lipoproteins-cholesterol 
909 4 NEFAs: non-esterified fatty acids 
910 5 BHB: β-hydroxybutyrate 
911 6 CRP: C-reactive protein
912 7 CK: creatine kinase 
913 8 GPx: glutathione peroxidase

914
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915
916 Table 3: Protein identification in noticeable bands of sarcoplasmic extracts separated by 

917 SDS-PAGE acrilamide gels

918

Band [MWe1] Identification Accession no.2
MOWSE3

scores

Sequence
Coverage 

(%)
Matched
Queries MWt4 

S2 (175.6 kDa) Myosin-binding protein C, fast-
type [Sus scrofa]: FastMyBP-C gi|335290041 111 14 13 128.4

S6 (86.8 kDa) Muscle 6-phosphofructokinase 
[Sus scrofa]: PFK-M gi|95117652 524 35 22 82.4

S9 (61.7 kDa) Albumin [Sus scrofa] gi|833798 808 38 20 71.4

S18 (32.5 kDa)

Glyceraldehyde-3-phosphate 
dehydrogenase 

(phosphorylating):
(EC 1.2.1.12)- pig: GAPDH

gi|65987 767 55 14 35.9

S23 (26.3 kDa) β-enolase [Bos taurus]: ENO3 gi|77736349 282 32 9 47.4
Carbonic anhydrase 3 [Sus 

scrofa]: CAIII gi|56711366 858 76 21 29.7
S24 (25.3 kDa) Phosphoglycerate mutase-2 

[Sus scrofa]: PGM2 gi|201066358 400 56 13 28.8

S26 (20.5 kDa) Adenylate kinase isoenzyme 1
 [Sus scrofa]: AK1 gi|350579686 539 65 15 21.7

919 1MWe is the experimental molecular weight (kDa)
920 2Accession number correspond to NCBInr database
921 3The MOWSE score is a numeric descriptor of the likelihood that the identification is correct. Protein scores greater 
922 than 69 are significant (P < 0.05)
923 4 MWt is the theoretical molecular weight (kDa)
924
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926
927 Table 4. Least squares means and the effect of sex (S), RYR1 genotype (G) and its 

928 interaction (S*G) on the expression of noticeable proteins of the muscle sarcoplasmic 

929 extracts (optical density, in arbitrary units). 

930
931
932

Sex Male Female P-value
Genotype NN Nn NN Nn SEM1 S G S*G

Fast MyBP-C 0.217 0.168 0.370 0.223 0.034 0.048 0.044 0.272
PFK-M 1.328 1.498 0.854 0.790 0.144 0.006 0.911 0.466
Albumin 2.688b 2.329b 1.881a 2.441b 0.119 0.081 0.385 0.006
GAPDH 14.065 13.109 14.398 12.235 0.367 0.710 0.009 0.313
ENO3 0.379 1.049 0.667 0.934 0.124 0.704 0.017 0.211
CAIII/PGM2 7.967 7.140 7.907 7.111 0.204 0.963 0.012 0.870
AK-1 2.085a 1.985a 1.979a 2.160b 0.046 0.658 0.591 0.046

933 Means in the same row followed by different superscripts are significantly different at P < 0.05.
934 1SEM: standard error of means
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938 Figure captions:

939

940 Figure 1. Effect of RYR1 mutation (NN: halothane free, Nn: gene mutation carrier) on 

941 the post mortem evolution of meat toughness, measured as maximum Warner Bratzler 

942 shear force (means ± S.E.). Significances: **: P < 0.01, ***: P< 0.001, NS: P > 0.05.

943

944 Figure 2. Urea (a) and GPx (b) levels in serum (means ± S.E.) in the four studied 

945 treatments (M: male, F: female, NN: halothane free, Nn: gene mutation carrier). 

946

947 Figure 3. SDS-PAGE gel image of sarcoplasmic extracts of the LD muscle in the four 

948 treatments (M-NN, M-Nn, F-NN, F-Nn). Band names are denoted by S (sarcoplasmic 

949 protein) followed by a number.

950

951 Figure 4. PCA biplot of meat quality traits and stress biomarkers. Mean scores for animal 

952 treatments (M-NN, M-Nn, F-NN, F-Nn) are shown in squares.
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961 Figure 2.
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971 Figure 4.
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975 Variables: EC: Electrical conductivity; WBSF-5d: Warner Bratzler shear force at 5 days post mortem; CK: Creatine 
976 kinase; GPx: Glutathione peroxidase; CAIII: Carbonic anhydrase; PGM2: Phosphoglycerate mutase-2; GAPDH: 
977 Glyceraldehyde-3-phosphate dehydrogenase; ENO3: β-enolase
978 Treatments: M-NN (male-halothane free), M-Nn (male-gene mutation carrier), F-NN (female-halothane free) and F-
979 Nn (female-gene mutation carrier). 
980

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714



TABLES FOR ON-LINE SUPPLEMENTARY MATERIAL

Table: Protein expressions for the whole set of protein bands separated by SDS-PAGE 
acrilamide gels (optical density, in arbitrary units). 

Sex Male Female Significance
Genotype NN Nn NN Nn S G S*G

B1 (210.6 kDa) 0.539 0.717 0.485 0.613 NS NS NS
B2 (175.6 kDa) 0.217 0.169 0.370 0.223 * * NS
B3 (145.1 kDa) 0.226 0.225 0.126 0.158 NS NS NS
B4 (114.1 kDa) 0.209 0.322 0.257 0.325 NS NS NS
B5 (97.8 kDa) 4.925 6.376 5.756 5.847 NS NS NS
B6 (86.8 kDa) 1.328 1.498 0.854 0.789 ** NS NS
B7 (73.8 kDa) 0.460 0.443 0.383 0.546 NS NS NS
B8 (70.5 kDa) 0.309 0.369 0.370 0.372 NS NS NS
B9 (61.7 kDa) 2.688 2.330 1.881 2.441 NS NS **

B10-11-121

(56.8-53.5 kDa) 11.038 10.999 11.782 11.287 NS NS NS

B13 (49.9 kDa) 0.617 0.403 0.476 0.501 NS NS NS
B14 (48.2 kDa) 0.082 0.326 0.092 0.934 NS NS NS
B15 (43.5 kDa) 12.837 12.766 13.381 13.490 NS NS NS
B16 (38.9 kDa) 16.113 16.271 16.575 16.391 NS NS NS
B17 (35.2 kDa) 11.439 10.637 8.743 10.533 NS NS NS
B18 (32.5 kDa) 14.065 13.109 14.398 12.235 NS ** NS
B19 (31.1 kDa) 6.493 6.631 6.686 6.365 NS NS NS

B20-212

(30.3-29.0 kDa) 1.027 1.044 0.752 0.893 NS NS NS

B22 (27.7 kDa) 1.023 1.032 1.105 1.078 NS NS NS
B23 (26.3 kDa) 0.379 1.049 0.667 0.934 NS * NS
B24 (25.3 kDa) 7.968 7.139 7.907 7.111 NS * NS
B25 (24.2 kDa) 3.411 3.291 3.968 3.903 NS NS NS
B26 (20.5 kDa) 2.085 1.985 1.978 2.161 NS NS *

1Bands 10,11 and 12 co-migrate in some SDS-PAGE gels, then they were quantified together
2Bands 20 and 21 co-migrate in some SDS-PAGE gels, then they were quantified together



Table: Protein identification for the whole set of protein bands separated by SDS-
PAGE acrilamide gels

Band [MWe1] Identification Accession no.2
MOWSE3

scores

Sequence
Coverage 

(%)
Matched
Queries MWt4 

B1 (210.6 kDa) Glycogen debranching enzyme [Bos 
Taurus] gi|300794727 491 14 21 176.2

B2 (175.6 kDa) Myosin-binding protein C, fast-type 
[Sus scrofa] gi|335290041 111 14 13 128.4

B3 (145.1 kDa) Muscle glycogen phosphorylase 
[Sus scrofa] gi|300119711 243 32 24 97.6

B4 (114.1 kDa) Muscle glycogen phosphorylase 
[Sus scrofa] gi|106073338 688 41 27 84.4

B5 (97.8 kDa) Glycogen phosphorylase, muscle 
form isoform 1 [Sus scrofa] gi|335281566 707 35 25 97.7

B6 (86.8 kDa) Muscle 6-phosphofructokinase [Sus 
scrofa] gi|95117652 524 35 22 82.4

B7 (73.8 kDa) heat shock 70kDa protein 8 [Sus 
scrofa] gi|345441750 645 35 16 71.1

B8 (70.5 kDa) Muscle glycogen phosphorylase 
[Sus scrofa] gi|106073338 560 37 23 84.4

B9 (61.7 kDa) Albumin, partial [Sus scrofa] gi|164318 808 38 20 71.3
B10 (56.8 kDa) Phosphoglucomutase-1 [Sus scrofa] gi|350538593 721 37 17 62.0

B11 (54.7 kDa) Pyruvate kinase isozymes M1/M2 
“PK” [Sus scrofa] gi|335292434 592 28 17 68.5

B12 (53.5 kDa) Glucose-6-phosphate isomerase 
[Sus scrofa] gi|47523720 509 25 15 63.1

B13 (49.9 kDa) UTP-glucose-1-phosphate 
uridylyltransferase [Sus scrofa] gi|47522786 218 36 12 57.1

B14 (48.2 kDa) β-enolase “ENO3” [Sus scrofa] gi|113205498 264 46 14 47.4
B15 (43.5 kDa) β-enolase”ENO3” [Sus scrofa] gi|113205498 786 66 22 47.4
B16 (38.9 kDa) Creatine kinase M-type [Sus scrofa] gi|184018722 688 40 12 43.3

B17 (35.2 kDa) Fructose-bisphosphate aldolase A 
[Bos taurus] gi|156120479 704 53 14 39.9

B18 (32.5 kDa)
Glyceraldehyde-3-phosphate 

dehydrogenase (phosphorylating) 
“GAPDH” (EC 1.2.1.12)- pig

gi|65987 767 55 14 35.9

B19 (31.1 kDa) L-lactate dehydrogenase A chain 
[Sus scrofa] gi|288860136 124 34 10 36.9

B20 (30.3 kDa) creatine kinase M chain [Bos 
taurus] gi|4838363 219 22 4 43.2

B21 (29.0 kDa)
Glyceraldehyde-3-phosphate 

dehydrogenase (phosphorylating) 
“GAPDH” (EC 1.2.1.12)- pig

gi|65987 403 45 9 35.9

B22 (27.7 kDa) Creatine kinase M-type [Sus strofa] gi|194018722 462 27 12 43.3
B23 (26.3 kDa) β-enolase “ENO3” [Bos taurus] gi|77736349 282 32 9 47.4

Carbonic anhydrase 3 “CAIII”
[Sus scrofa] gi|56711366 858 76 21 29.7

B24 (25.3 kDa) Phosphoglycerate mutase-2 
“PGM2” [Sus scrofa] gi|201066358 400 56 13 28.8

B25 (24.2 kDa) Triosephosphate isomerase 1 [Sus 
scrofa] gi|262263205 441 71 14 26.9

B26 (20.5 kDa) Adenylate kinase isoenzyme 1
“AK-1” [Sus scrofa] gi|350579686 539 65 15 21.7

1 MWe is the experimental molecular weight (kDa)
2Accession number correspond to NCBInr database
3 The MOWSE score is a numeric descriptor of the likelihood that the identification is correct. Protein 
scores greater than 69 are significant (P < 0.05)



4  MWt is the theoretical molecular weight (kDa)




