3 research outputs found

    Defining the genetic control of human blood plasma N-glycome using genome-wide association study

    Get PDF
    Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area

    Association of Systemic Lupus Erythematosus With Decreased Immunosuppressive Potential of the IgG Glycome

    Get PDF
    OBJECTIVE: Glycans attached to the Fc portion of IgG are important modulators of IgG effector functions. Interindividual differences in IgG glycome composition are large and they associate strongly with different inflammatory and autoimmune diseases. IKZF1, HLA–DQ2A/B, and BACH2 genetic loci that affect IgG glycome composition show pleiotropy with systemic lupus erythematosus (SLE), indicating a potentially causative role of aberrant IgG glycosylation in SLE. We undertook this large multicenter case–control study to determine whether SLE is associated with altered IgG glycosylation. METHODS: Using ultra‐performance liquid chromatography analysis of released glycans, we analyzed the composition of the IgG glycome in 261 SLE patients and 247 matched controls of Latin American Mestizo origin (the discovery cohort) and in 2 independent replication cohorts of different ethnicity (108 SLE patients and 193 controls from Trinidad, and 106 SLE patients and 105 controls from China). RESULTS: Multiple statistically significant differences in IgG glycome composition were observed between patients and controls. The most significant changes included decreased galactosylation and sialylation of IgG (which regulate proinflammatory and antiinflammatory actions of IgG) as well as decreased core fucose and increased bisecting N‐acetylglucosamine (which affect antibody‐dependent cell‐mediated cytotoxicity). CONCLUSION: The IgG glycome in SLE patients is significantly altered in a way that decreases immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the intensity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in SLE

    Body mass index from age 15 years onwards and muscle mass, strength and quality in early old age: findings from the MRC National Survey of Health and Development

    Get PDF
    BACKGROUND: As more people live more of their lives obese, it is unclear what impact this will have on muscle mass, strength, and quality. We aimed to examine the associations of body mass index (BMI) from age 15 years onwards with low muscle mass, strength, and quality in early old age.METHODS: A total of 1,511 men and women from a British birth cohort study with BMI measured at 15, 20, 26, 36, 43, 53, and 60-64 years and dual-energy x-ray absorptiometry scans at 60-64 years were included. Four binary outcomes identified those in the bottom sex-specific 20% of (a) appendicular lean mass (ALM) index (kilogram per square meter), (b) ALM residuals (derived from sex-specific models in which ALM (kilogram) = ?0 + ?1 height [meter] + ?2 fat mass [kilogram]), (c) grip strength (kilogram), (d) muscle quality (grip strength [kilogram]/arm lean mass [kilogram]). Associations of BMI with each outcome were tested.RESULTS: Higher BMI from age 15 years was associated with lower odds of low ALM but higher odds of low muscle quality (per 1 SD increase in BMI at 36 years, odds ratio of low ALM residuals = 0.50 [95% CI: 0.43, 0.59], and muscle quality = 1.50 [1.29, 1.75]). Greater gains in BMI were associated with lower odds of low ALM index but higher odds of low muscle quality. BMI was not associated with grip strength.CONCLUSIONS: Given increases in the global prevalence of obesity, cross-cohort comparisons of sarcopenia need to consider our findings that greater gains in BMI are associated with higher muscle mass but not with grip strength and therefore with lower muscle quality
    corecore