133 research outputs found

    Laboratory measurement campaign of DVB-T signal with transmit delay diversity

    Get PDF
    The requirements for future DVB-T/H networks demand that broadcasters design and deploy networks that provide ubiquitous reception in challenging indoors and other obstructed situations. It is essential that such networks are designed cost-effectively and with minimized environmental impact. The EC funded project PLUTO has since its start in 2006 explored the use of diversity to improve coverage in these difficult situations. The purpose of this paper is to investigate the performance of Transmit Delay Diversity (DD) with two antennas to improve the reception of DVB-T/H systems operating in different realistic propagation conditions through a series of tests using a SPIRENT SR5500 dual channel emulator. The relationship between correlation coefficient between channels, receiver velocity and diversity gain is nvestigated. It is shown that transmit delay diversity significantly improves the quality of reception particularly in simulated fast fading mobile broadcasting applications. This paper documents research conducted by Brunel University and Broadreach Systems

    Field trials and test results of portable DVB-T systems with transmit delay diversity

    Get PDF
    This paper describes work carried out by Brunel University and Broadreach Systems (UK) to quantify the advantages that can be achieved if Transmit Diversity is applied to systems employing the DVB standard. The techniques investigated can be applied to standard receiver equipment without modification. An extensive and carefully planned field trial was performed during the winter of 2007/2008 in Uxbridge (UK) to validate predictions from theoretical modeling and laboratory simulations. The transmissions were performed in the 730 MHz frequency band with a DVB-T transmitter and a mean power of 18.4dBW. Transmit delay diversity has been observed to deliver significant reception improvement in automotive and indoor- non line of sight situations

    Effect of temperature and time delay in centrifugation on stability of select biomarkers of nutrition and non-communicable diseases in blood samples

    Get PDF
    Introduction: Preanalytical conditions are critical for blood sample integrity and poses challenge in surveys involving biochemical measurements. A cross sectional study was conducted to assess the stability of select biomarkers at conditions that mimic field situations in surveys. Material and methods: Blood from 420 volunteers was exposed to 2 – 8 °C, room temperature (RT), 22 – 30 °C and > 30 °C for 30 min, 6 hours, 12 hours and 24 hours prior to centrifugation. After different exposures, whole blood (N = 35) was used to assess stability of haemoglobin, HbA1c and erythrocyte folate; serum (N = 35) for assessing stability of ferritin, C-reactive protein (CRP), vitamins B12, A and D, zinc, soluble transferrin receptor (sTfR), total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), tryglicerides, albumin, total protein and creatinine; and plasma (N = 35) was used for glucose. The mean % deviation of the analytes was compared with the total change limit (TCL), computed from analytical and intra-individual imprecision. Values that were within the TCL were deemed to be stable. Result: Creatinine (mean % deviation 14.6, TCL 5.9), haemoglobin (16.4%, TCL 4.4) and folate (33.6%, TCL 22.6) were unstable after 12 hours at 22- 30°C, a temperature at which other analytes were stable. Creatinine was unstable even at RT for 12 hours (mean % deviation: 10.4). Albumin, CRP, glucose, cholesterol, LDL, triglycerides, vitamins B12 and A, sTfR and HbA1c were stable at all studied conditions. Conclusion: All analytes other than creatinine, folate and haemoglobin can be reliably estimated in blood samples exposed to 22-30°C for 12 hours in community-based studies

    Periodic revisions of the international choices criteria: Process and results

    Get PDF
    Unhealthy diets contribute to an increased risk of non-communicable diseases, which are the leading causes of deaths worldwide. Nutrition policies such as front-of-pack labeling have been developed and implemented globally in different countries to stimulate healthier diets. The Choices Programme, including the International Choices criteria, is an established tool to support the implementation of such policies. The Choices criteria were developed to define the healthier choices per product group, taking saturated fatty acids, trans fatty acids, sodium, sugars, energy, and fiber into account. To keep these criteria updated, they are periodically revised by an independent international scientific committee. This paper explains the most important changes resulting from revisions between 2010 and 2016 and describes the process of the latest revision, resulting in the International Choices criteria version 2019. Revisions were based on national and international nutrition and dietary recommendations, large food composition databases, and stakeholders’ feedback. Other nutrient profiling systems served as benchmarks. The product group classification was adapted and new criteria were determined in order to enhance global applicability and form a credible, intuitively logical system for users. These newly developed criteria will serve as an international standard for healthier products and provide a guiding framework for food and nutrition policies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Climate Change Adaptation on Small Island States: An Assessment of Limits and Constraints

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-11, pub-electronic 2021-05-31Publication status: PublishedSmall Island States (SIDS) are among the nations most exposed to climate change (CC) and are characterised by a high degree of vulnerability. Their unique nature means there is a need for more studies focused on the limits to CC adaptation on such fragile nations, particularly regarding their problems and constraints. This paper addressed a perceived need for research into the limitations of adaptation on SIDS, focusing on the many unique restrictions. To this end, the study identified and described the adaptation limits they have by using a review of the literature and an analysis of case studies from a sample of five SIDS in the Caribbean and Pacific regions (Barbados, Trinidad and Tobago, Cook Islands, Fiji, Solomon Islands and Tonga). This research’s findings showed that an adaptable SIDS is characterised by awareness of various values, appreciation and understanding of a diversity of impacts and vulnerabilities, and acceptance of certain losses through change. The implications of this paper are two-fold. It explains why island nations continue to suffer from the impacts of CC and suggest some of the means via which adequate policies may support SIDS in their efforts to cope with the threats associated with a changing climate. This study concluded that, despite the technological and ecological limits (hard limits) affecting natural systems, adaptation to CC is limited by such complex forces and societal factors (soft limits) that more adequate adaptation strategies could overcome

    Crop Updates 2006 - Lupins and Pulses

    Get PDF
    This session covers sixty six papers from different authors: 2005 LUPIN AND PULSE INDUSTRY HIGHLIGHTS 1. Lupin Peter White, Department of Agriculture 2. Pulses Mark Seymour, Department of Agriculture 3. Monthly rainfall at experimental sites in 2005 4. Acknowledgements Amelia McLarty EDITOR 5. Contributors 6. Background Peter White, Department of Agriculture 2005 REGIONAL ROUNDUP 7. Northern agricultural region Wayne Parker, Department of Agriculture 8. Central agricultural region Ian Pritchard and Bob French, Department of Agriculture 9. Great southern and lakes Rodger Beermier, Department of Agriculture 10. South east region Mark Seymour, Department of Agriculture LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 11. Lupin Peter White, Department of Agriculture 12. Narrow-leafed lupin breeding Bevan Buirchell, Department of Agriculture 13. Progress in the development of pearl lupin (Lupinus mutabilis) for Australian agriculture, Mark Sweetingham1,2, Jon Clements1, Geoff Thomas2, Roger Jones1, Sofia Sipsas1, John Quealy2, Leigh Smith1 and Gordon Francis1 1CLIMA, The University of Western Australia 2Department of Agriculture 14. Molecular genetic markers and lupin breeding, Huaan Yang, Jeffrey Boersma, Bevan Buirchell, Department of Agriculture 15. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus augustiflolius L) Jeffrey Boersma1,2, Margaret Pallotta3, Bevan Buirchell1, Chengdao Li1, Krishnapillai Sivasithamparam2 and Huaan Yang1 1Department of Agriculture, 2The University of Western Australia, 3Australian Centre for Plant Functional Genomics, South Australia 16. The first gene-based map of narrow-leafed lupin – location of domestication genes and conserved synteny with Medicago truncatula, M. Nelson1, H. Phan2, S. Ellwood2, P. Moolhuijzen3, M. Bellgard3, J. Hane2, A. Williams2, J. Fos‑Nyarko4, B. Wolko5, M. Książkiewicz5, M. Cakir4, M. Jones4, M. Scobie4, C. O’Lone1, S.J. Barker1, R. Oliver2, and W. Cowling1 1School of Plant Biology, The University of Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, 3Centre for Bioinformatics and Biological Computing, Murdoch University, 4School of Biological Sciences and Biotechnology, SABC, Murdoch University,5Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland 17. How does lupin optimum density change row spacing? Bob French and Laurie Maiolo, Department of Agriculture 18. Wide row spacing and seeding rate of lupins with conventional and precision seeding machines Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 19. Influence of row spacing and plant density on lupin competition with annual ryegrass, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 20. Effect of timing and speed of inter-row cultivation on lupins, Martin Harries, Jo Walker and Steve Cosh, Department of Agriculture 21. The interaction of atrazine herbicide rate and row spacing on lupin seedling survival, Martin Harries and Jo Walker Department of Agriculture 22. The banding of herbicides on lupin row crops, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 23. Large plot testing of herbicide tolerance of new lupin lines, Wayne Parker, Department of Agriculture 24. Effect of seed source and simazine rate of seedling emergence and growth, Peter White and Greg Shea, Department of Agriculture 25. The effect of lupin row spacing and seeding rate on a following wheat crop, Martin Harries, Jo Walker and Dirranie Kirby, Department of Agriculture 26. Response of crop lupin species to row spacing, Leigh Smith1, Kedar Adhikari1, Jon Clements2 and Patrizia Guantini3, 1Department of Agriculture, 2CLIMA, The University of Western Australia, 3University of Florence, Italy 27. Response of Lupinus mutabilis to lime application and over watering, Peter White, Leigh Smith and Mark Sweetingham, Department of Agriculture 28. Impact of anthracnose on yield of Andromeda lupins, Geoff Thomas, Kedar Adhikari and Katie Bell, Department of Agriculture 29. Survey of lupin root health (in major production areas), Geoff Thomas, Ken Adcock, Katie Bell, Ciara Beard and Anne Smith, Department of Agriculture 30. Development of a generic forecasting and decision support system for diseases in the Western Australian wheatbelt, Tim Maling1, Art Diggle1,2, Debbie Thackray1, Kadambot Siddique1 and Roger Jones1,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 31.Tanjil mutants highly tolerant to metribuzin, Ping Si1, Mark Sweetingham1,2, Bevan Buirchell1,2 and Huaan Yang l,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 32. Precipitation pH vs. yield and functional properties of lupin protein isolate, Vijay Jayasena1, Hui Jun Chih1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 33. Lupin protein isolation with the use of salts, Vijay Jayasena1, Florence Kartawinata1,Ranil Coorey1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 34. Field pea, Mark Seymour, Department of Agriculture 35. Breeding highlights Kerry Regan1,2, Tanveer Khan1,2, Stuart Morgan1 and Phillip Chambers1 1Department of Agriculture, 2CLIMA, The University of Western Australia 36. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge1 and Rod Hunter1 1Department of Agriculture, 2CLIMA, The University of Western Australia 37. Days to flowering of field pea varieties throughout WA Mark Seymour1, Ian Pritchard1, Rodger Beermier1, Pam Burgess1 and Dr Eric Armstrong2 Department of Agriculture, 2NSW Department of Primary Industries, Wagga Wagga 38. Semi-leafless field peas yield more, with less ryegrass seed set, in narrow rows, Glen Riethmuller, Department of Agriculture 39. Swathing, stripping and other innovative ways to harvest field peas, Mark Seymour, Ian Pritchard, Rodger Beermier and Pam Burgess, Department of Agriculture 40. Pulse demonstrations, Ian Pritchard, Wayne Parker, Greg Shea, Department of Agriculture 41. Field pea extension – focus on field peas 2005, Ian Pritchard, Department of Agriculture 42. Field pea blackspot disease in 2005: Prediction versus reality, Moin Salam, Jean Galloway, Pip Payne, Bill MacLeod and Art Diggle, Department of Agriculture 43. Pea seed-borne mosaic virus in pulses: Screening for seed quality defects and virus resistance, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 44. Yield losses from sowing field peas infected with pea seed-borne mosaic virus, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 45. Desi chickpea, Wayne Parker, Department of Agriculture 46. Breeding highlights, Tanveer Khan 1,2, Pooran Gaur3, Kadambot Siddique2, Heather Clarke2, Stuart Morgan1and Alan Harris1, 1Department of Agriculture2CLIMA, The University of Western Australia, 3International Crop Research Institute for Semi Arid Tropics (ICRISAT), India 47. National chickpea improvement program, Kerry Regan1, Ted Knights2 and Kristy Hobson3,1Department of Agriculture, 2Agriculture New South Wales 3Department of Primary Industries, Victoria 48. Chickpea breeding lines in CVT exhibit excellent ascochyta blight resistance, Tanveer Khan1,2, Alan Harris1, Stuart Morgan1 and Kerry Regan1,2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 49. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge2 and Rod Hunter2, 1CLIMA, The University of Western Australia 2Department of Agriculture 50. Desi chickpeas for the wheatbelt, Wayne Parker and Ian Pritchard, Department of Agriculture 51. Large scale demonstration of new chickpea varieties, Wayne Parker, MurrayBlyth, Steve Cosh, Dirranie Kirby and Chris Matthews, Department of Agriculture 52. Ascochyta management with new chickpeas, Martin Harries, Bill MacLeod, Murray Blyth and Jo Walker, Department of Agriculture 53. Management of ascochyta blight in improved chickpea varieties, Bill MacLeod1, Colin Hanbury2, Pip Payne1, Martin Harries1, Murray Blyth1, Tanveer Khan1,2, Kadambot Siddique2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 54. Botrytis grey mould of chickpea, Bill MacLeod, Department of Agriculture 55. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 56. New ascochyta blight resistant, high quality kabuli chickpea varieties, Kerry Regan1,2, Kadambot Siddique2, Tim Pope2 and Mike Baker1, 1Department of Agriculture, 2CLIMA, The University of Western Australia 57. Crop production and disease management of Almaz and Nafice, Kerry Regan and Bill MacLeod, Department of Agriculture, and CLIMA, The University of Western Australia 58. Faba bean,Mark Seymour, Department of Agriculture 59. Germplasm evaluation – faba bean, Mark Seymour1, Tim Pope2, Peter White1, Martin Harries1, Murray Blyth1, Rodger Beermier1, Pam Burgess1 and Leanne Young1,1Department of Agriculture, 2CLIMA, The University of Western Australia 60. Factors affecting seed coat colour of faba bean during storage, Syed Muhammad Nasar-Abbas1, Julie Plummer1, Kadambot Siddique2, Peter White 3, D. Harris4 and Ken Dods4.1The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre 61. Lentil,Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 62. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Phill Chambers1, Alan Harris1, Wayne Parker1 and Michael Materne3, 1Department of Agriculture 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria Pulse species 63. Land suitability for production of different crop species in Western Australia, Peter White, Dennis van Gool, and Mike Baker, Department of Agriculture 64. Genomic synteny in legumes: Application to crop breeding, Huyen Phan1, Simon Ellwood1, J. Hane1, Angela Williams1, R. Ford2, S. Thomas3 and Richard Oliver1,1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University 2BioMarka, School of Agriculture and Food Systems, ILFR, University of Melbourne 3NSW Department of Primary Industries 65. ALOSCA – Development of a dry flow legume seed inoculant, Rory Coffey and Chris Poole, ALOSCA Technologies Pty Ltd 66. Genetic dissection of resistance to fungal necrotrophs in Medicago truncatula, Simon Ellwood1, Theo Pfaff1, Judith Lichtenzveig12, Lars Kamphuis1, Nola D\u27Souza1, Angela Williams1, Emma Groves1, Karam Singh2 and Richard Oliver1 1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2CSIRO Plant Industry APPENDIX I: LIST OF COMMON ACRONYM

    Control of urea hydrolysis and nitrification in soil by chemicals - Prospects and problems

    Get PDF
    A review is made of the recent work to assess the prospects of regulating urea hydrolysis and nitrification processes in soils by employing chemicals that can retard urea hydrolysis and nitrification. The possible benefits from control of nitrogen transformations in terms of conserving and enhancing fertilizer nitrogen efficiency for crop production and the problems associated with their use with regard to N metabolism of plants have also been discussed with examples. Prospects of using cheap and effective indigenous materials and chemicals for control of urea hydrolysis and nitrification under specific soil situations appear eminent in improving the fertilizer nitrogen efficiency. Urease inhibitors may be helpful in reducing problems associated with ammonia volatilization if this is not offset by leaching of urea. On the other hand retardation of nitrification appears useful in reducing losses that accompany nitrification due to leaching and denitrification, and with the plants that metabolize equally well with relatively higher amounts of NH4–N may be more effective in improving the utilization of fertilizer N under these situation
    corecore