164 research outputs found
Improving the Response Time of M-Learning and Cloud Computing Environments Using a Dominant Firefly Approach
© 2013 IEEE. Mobile learning (m-learning) is a relatively new technology that helps students learn and gain knowledge using the Internet and Cloud computing technologies. Cloud computing is one of the recent advancements in the computing field that makes Internet access easy to end users. Many Cloud services rely on Cloud users for mapping Cloud software using virtualization techniques. Usually, the Cloud users' requests from various terminals will cause heavy traffic or unbalanced loads at the Cloud data centers and associated Cloud servers. Thus, a Cloud load balancer that uses an efficient load balancing technique is needed in all the cloud servers. We propose a new meta-heuristic algorithm, named the dominant firefly algorithm, which optimizes load balancing of tasks among the multiple virtual machines in the Cloud server, thereby improving the response efficiency of Cloud servers that concomitantly enhances the accuracy of m-learning systems. Our methods and findings used to solve load imbalance issues in Cloud servers, which will enhance the experiences of m-learning users. Specifically, our findings such as Cloud-Structured Query Language (SQL), querying mechanism in mobile devices will ensure users receive their m-learning content without delay; additionally, our method will demonstrate that by applying an effective load balancing technique would improve the throughput and the response time in mobile and cloud environments
Chiral drag force
We provide a holographic evaluation of novel contributions to the drag force
acting on a heavy quark moving through strongly interacting plasma. The new
contributions are chiral in that they act in opposite directions in plasmas
containing an excess of left- or right-handed quarks and in that they are
proportional to the coefficient of the axial anomaly. These new contributions
to the drag force act either parallel to or antiparallel to an external
magnetic field or to the vorticity of the fluid plasma. In all these respects,
these contributions to the drag force felt by a heavy quark are analogous to
the chiral magnetic effect on light quarks. However, the new contribution to
the drag force is independent of the electric charge of the heavy quark and is
the same for heavy quarks and antiquarks. We show that although the chiral drag
force can be non-vanishing for heavy quarks that are at rest in the local fluid
rest frame, it does vanish for heavy quarks that are at rest in a suitably
chosen frame. In this frame, the heavy quark at rest sees counterpropagating
momentum and charge currents, both proportional to the axial anomaly
coefficient, but feels no drag force. This provides strong concrete evidence
for the absence of dissipation in chiral transport, something that has been
predicted previously via consideration of symmetries. Along the way to our
principal results, we provide a general calculation of the corrections to the
drag force due to the presence of gradients in the flowing fluid in the
presence of a nonzero chemical potential. We close with a consequence of our
result that is at least in principle observable in heavy ion collisions, namely
an anticorrelation between the direction of the CME current for light quarks in
a given event and the direction of the kick given to the momentum of all the
heavy quarks and antiquarks in that event.Comment: 28 pages, small improvement to the discussion of gravitational
anomaly, references adde
Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry
Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors
Detection of Light Images by Simple Tissues as Visualized by Photosensitized Magnetic Resonance Imaging
In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI). We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD)-MRI protocol, termed photosensitized (ps)MRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold) were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1). This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind
A Model of Late Long-Term Potentiation Simulates Aspects of Memory Maintenance
Late long-term potentiation (L-LTP) appears essential for the formation of
long-term memory, with memories at least partly encoded by patterns of
strengthened synapses. How memories are preserved for months or years, despite
molecular turnover, is not well understood. Ongoing recurrent neuronal
activity, during memory recall or during sleep, has been hypothesized to
preferentially potentiate strong synapses, preserving memories. This hypothesis
has not been evaluated in the context of a mathematical model representing
biochemical pathways important for L-LTP. I incorporated ongoing activity into
two such models: a reduced model that represents some of the essential
biochemical processes, and a more detailed published model. The reduced model
represents synaptic tagging and gene induction intuitively, and the detailed
model adds activation of essential kinases by Ca. Ongoing activity was modeled
as continual brief elevations of [Ca]. In each model, two stable states of
synaptic weight resulted. Positive feedback between synaptic weight and the
amplitude of ongoing Ca transients underlies this bistability. A tetanic or
theta-burst stimulus switches a model synapse from a low weight to a high
weight stabilized by ongoing activity. Bistability was robust to parameter
variations. Simulations illustrated that prolonged decreased activity reset
synapses to low weights, suggesting a plausible forgetting mechanism. However,
episodic activity with shorter inactive intervals maintained strong synapses.
Both models support experimental predictions. Tests of these predictions are
expected to further understanding of how neuronal activity is coupled to
maintenance of synaptic strength.Comment: Accepted to PLoS One. 8 figures at en
Palladium nanoparticles supported on fluorine-doped tin oxide as an efficient heterogeneous catalyst for Suzuki coupling and 4-nitrophenol reduction
Immobilization of palladium nanoparticles onto the fluorine-doped tin oxide (FTO) as support Pd/FTO, resulted in a highly active heterogeneous catalyst for Suzuki-Miyaura cross-coupling reactions and 4-nitrophenol reduction. The Pd/FTO catalyst has been synthesized by immobilization of palladium nanoparticles onto FTO via a simple impregnation method. ICP-MS analysis confirmed that there is 0.11 mmol/g of palladium was loaded successfully on FTO support. The crystallinity, morphologies, compositions and surface properties of Pd/FTO were fully characterized by various techniques. It was further examined for its catalytic activity and robustness in Suzuki coupling reaction with different aryl halides and solvents. The yields obtained from Suzuki coupling reactions were basically over 80%. The prepared catalyst was also tested on mild reaction such as reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Pd/FTO catalyst exhibited high catalytic activity towards 4-NP reduction with a rate constant of 1.776 min(-1) and turnover frequency (TOF) value of 29.1 hr(-1). The findings revealed that Pd/FTO also maintained its high stability for five consecutive runs in Suzuki reactions and 4-NP reductions. The catalyst showed excellent catalytic activities by using a small amount of Pd/FTO for the Suzuki coupling reaction and 4-NP reduction
Current and Future Drug Targets in Weight Management
Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT2C agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
- …