762 research outputs found
Critical analysis of autoregressive and fast Fourier transform markers of cardiovascular variability in rats and humans
The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.FINEPFAPESPZerbini Foundatio
Newton's law for Bloch electrons, Klein factors and deviations from canonical commutation relations
The acceleration theorem for Bloch electrons in a homogenous external field
is usually presented using quasiclassical arguments. In quantum mechanical
versions the Heisenberg equations of motion for an operator
are presented mostly without properly defining this operator. This leads to the
surprising fact that the generally accepted version of the theorem is incorrect
for the most natural definition of . This operator is shown not
to obey canonical commutation relations with the position operator. A similar
result is shown for the phase operators defined via the Klein factors which
take care of the change of particle number in the bosonization of the field
operator in the description of interacting fermions in one dimension. The phase
operators are also shown not to obey canonical commutation relations with the
corresponding particle number operators. Implications of this fact are
discussed for Tomonaga-Luttinger type models.Comment: 9 pages,1 figur
Gravity-induced Wannier-Stark ladder in an optical lattice
We discuss the dynamics of ultracold atoms in an optical potential
accelerated by gravity. The positions and widths of the Wannier-Stark ladder of
resonances are obtained as metastable states. The metastable Wannier-Bloch
states oscillate in a single band with the Bloch period. The width of the
resonance gives the rate transition to the continuum.Comment: 5 pages + 8 eps figures, submitted to Phys. Rev.
ac-Field-Controlled Anderson Localization in Disordered Semiconductor Superlattices
An ac field, tuned exactly to resonance with the Stark ladder in an ideal
tight binding lattice under strong dc bias, counteracts Wannier-Stark
localization and leads to the emergence of extended Floquet states. If there is
random disorder, these states localize. The localization lengths depend
non-monotonically on the ac field amplitude and become essentially zero at
certain parameters. This effect is of possible relevance for characterizing the
quality of superlattice samples, and for performing experiments on Anderson
localization in systems with well-defined disorder.Comment: 10 pages, Latex; figures available on request from [email protected]
Toward ab initio density functional theory for nuclei
We survey approaches to nonrelativistic density functional theory (DFT) for
nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab
initio DFT starts with a microscopic Hamiltonian and is naturally formulated
using orbital-based functionals, which generalize the conventional
local-density-plus-gradients form. The orbitals satisfy single-particle
equations with multiplicative (local) potentials. The DFT functionals can be
developed starting from internucleon forces using wave-function based methods
or by Legendre transform via effective actions. We describe known and
unresolved issues for applying these formulations to the nuclear many-body
problem and discuss how ab initio approaches can help improve empirical energy
density functionals.Comment: 69 pages, 16 figures, many revisions based on feedback. To appear in
Progress in Particle and Nuclear Physic
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
Search for Higgs Bosons in e+e- Collisions at 183 GeV
The data collected by the OPAL experiment at sqrts=183 GeV were used to
search for Higgs bosons which are predicted by the Standard Model and various
extensions, such as general models with two Higgs field doublets and the
Minimal Supersymmetric Standard Model (MSSM). The data correspond to an
integrated luminosity of approximately 54pb-1. None of the searches for neutral
and charged Higgs bosons have revealed an excess of events beyond the expected
background. This negative outcome, in combination with similar results from
searches at lower energies, leads to new limits for the Higgs boson masses and
other model parameters. In particular, the 95% confidence level lower limit for
the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons
can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA >
72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and
soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for
minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM
parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European
Physical Journal
- …