133 research outputs found

    Non-pharmacological solutions to sleep and circadian rhythm disruption: voiced bedside experiences of hospice and end-oflife staff caregivers

    Full text link
    Background: Sleep disturbance is a significant issue, particularly for patients with advanced terminal illness. Currently, there are no practice-based recommended approaches for managing sleep and circadian disruptions in this population. To address this gap, a cross-sectional focus group study was performed engaging 32 staff members at four hospices/end-of-life programs in three demographically diverse counties in New York State. Methods: Participants responded to structured open-ended questions. Responses were transcribed and subjected to qualitative content analysis. The themes and recommendations for improved practice that emerged were tabulated using Atlas TI qualitative software. Results: This report details the experiences of hospice and end-of-life care staff in managing sleep and circadian disruptions affecting patients and analyzes their recommendations for improving care. Caregivers involved in the study described potential interventions that would improve sleep and reduce circadian disruptions. They particularly highlighted a need for improved evaluation and monitoring systems, as well as sleep education programs for both formal and informal caregivers. Conclusions: The voiced experiences of frontline hospice and end-of-life caregivers confirmed that disruption in sleep and circadian rhythms is a common issue for their patients and is not effectively addressed in current research and practice. The caregivers’ recommendations focused on management strategies and underscored the need for well-tested interventions to promote sleep in patients receiving end-of-life care. Additional research is needed to examine the effectiveness of systematic programs that can be easily integrated into the end-of-life care process to attenuate sleep disturbances

    The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation

    Get PDF
    We thank Cowen lab members for helpful discussions. We also thank David Rogers (University of Tennessee) for sharing microarray analysis of the CAS5 homozygous mutant, and Li Ang (University of Macau) for assistance in optimizing the ChIP-Seq experiments. J.L.X. is supported by a Canadian Institutes of Health Research Doctoral award and M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072). B.T.G. holds an Ontario Graduate Scholarship. C.B. and B.J.A. are supported by the Canadian Institutes of Health Research Foundation Grants (FDN-143264 and -143265). D.J.K. is supported by a National Institute of Allergy and Infectious Diseases grant (1R01AI098450) and J.D.L.C.D. is supported by the University of Rochester School of Dentistry and Medicine PREP program (R25 GM064133). A.S. is supported by the Creighton University and the Nebraska Department of Health and Human Services (LB506-2017-55). K.H.W. is supported by the Science and Technology Development Fund of Macau S.A.R. (FDCT; 085/2014/A2). L.E.C. is supported by the Canadian Institutes of Health Research Operating Grants (MOP-86452 and MOP-119520), the Natural Sciences and Engineering Council (NSERC) of Canada Discovery Grants (06261 and 462167), and an NSERC E.W.R. Steacie Memorial Fellowship (477598).Peer reviewedPublisher PD

    Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca2+ signalling

    Get PDF
    Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological-or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca(2+)calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour-stroma interaction

    Threonine 150 phosphorylation of keratin 5 is linked to EBS and regulates filament assembly, cell cycle and oxidative stress response

    Get PDF
    A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII–/–) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis

    Genome-wide analyses identify SCN5A as a susceptibility locus for premature atrial contraction frequency.

    Get PDF
    Premature atrial contractions (PACs) are frequently observed on electrocardiograms and are associated with increased risks of atrial fibrillation (AF), stroke, and mortality. In this study, we aimed to identify genetic susceptibility loci for PAC frequency. We performed a genome-wide association study meta-analysis with PAC frequency obtained from ambulatory cardiac monitoring in 4,831 individuals of European ancestry. We identified a genome-wide significant locus at the SCN5A gene. The lead variant, rs7373862, located in an intron of SCN5A, was associated with an increase of 0.12 [95% CI 0.08-0.16] standard deviations of the normalized PAC frequency per risk allele. Among genetic variants previously associated with AF, there was a significant enrichment in concordance of effect for PAC frequency (n = 73/106, p = 5.1 × 10-5). However, several AF risk loci, including PITX2, were not associated with PAC frequency. These findings suggest the existence of both shared and distinct genetic mechanisms for PAC frequency and AF

    Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea)

    Get PDF
    The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received increasing attention over the past 10 years. However, much less is known about the scale at which this variation is generated and maintained, both within and across populations of the same plant species. This study compares growth and development of the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus (CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest in the wild plants in rank order WIN > OH > KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated. Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences in plant quality

    Genotype–Phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations

    Get PDF
    In the present study, genotype–phenotype correlations in eight Dutch DFNB8/10 families with compound heterozygous mutations in TMPRSS3 were addressed. We compared the phenotypes of the families by focusing on the mutation data. The compound heterozygous variants in the TMPRSS3 gene in the present families included one novel variant, p.Val199Met, and four previously described pathogenic variants, p.Ala306Thr, p.Thr70fs, p.Ala138Glu, and p.Cys107Xfs. In addition, the p.Ala426Thr variant, which had previously been reported as a possible polymorphism, was found in one family. All affected family members reported progressive bilateral hearing impairment, with variable onset ages and progression rates. In general, the hearing impairment affected the high frequencies first, and sooner or later, depending on the mutation, the low frequencies started to deteriorate, which eventually resulted in a flat audiogram configuration. The ski-slope audiogram configuration is suggestive for the involvement of TMPRSS3. Our data suggest that not only the protein truncating mutation p.T70fs has a severe effect but also the amino acid substitutions p.Ala306Thr and p.Val199Met. A combination of two of these three mutations causes prelingual profound hearing impairment. However, in combination with the p.Ala426Thr or p.Ala138Glu mutations, a milder phenotype with postlingual onset of the hearing impairment is seen. Therefore, the latter mutations are likely to be less detrimental for protein function. Further studies are needed to distinguish possible phenotypic differences between different TMPRSS3 mutations. Evaluation of performance of patients with a cochlear implant indicated that this is a good treatment option for patients with TMPRSS3 mutations as satisfactory speech reception was reached after implantation
    corecore