34 research outputs found

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Detection of hydrogen fluoride in absorption towards Orion KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules (“weeds”), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 × 1013 cm−2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ∼1.6 × 10−10 for the HF abundance relative to hydrogen nuclei, corresponding to ∼0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J = 2−1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 × 10−9 derived by Neufeld et al. for cold, foreground clouds on the line of sight towards G10.6-0.4

    Herschel observations of EXtra-Ordinary Sources (HEXOS): The Terahertz spectrum of Orion KL seen at high spectral resolution

    Get PDF
    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4–1702.8 GHz (band 6b) and 1788.4–1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands

    Herschel observations of EXtra-Ordinary Sources (HEXOS): detecting spiral arm clouds by CH absorption lines

    Get PDF
    We have observed CH absorption lines (J = 3/2, N = 1 ← J = 1/2, N = 1) against the continuum source Sgr B2(M) using the Herschel/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show “spiral arm” cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr B2 envelope. The observations show that each “spiral arm” harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H2 column densities found at lower AV by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which probably means that CH is depleted in the denser cores of these clouds

    Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis

    Full text link

    An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools

    Get PDF
    Nuclear power provides a significant portion of our current energy demand and is likely to become more wide spread with growing world population. However, the radioactive waste generated in these power plants must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental catastrophe. In this paper, we present an underwater mobile sensor network that is being developed to monitor these waste storage pools. This sensing system will also be used in very old storage pools to build maps of their internal structure which can then be used for waste removal and pool decommissioning. In this paper, we outline the unique challenges of our application scenario which include robot localization in cluttered underwater environments and the effect of location errors on environment mapping. We also list other industrial applications that can benefit from our underwater sensor networ

    An underwater robotic network for monitoring nuclear waste storage pools

    Get PDF
    Abstract. Nuclear power provides a significant portion of our current energy demand and is likely to become more wide spread with grow-ing world population. However, the radioactive waste generated in these power plants must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental catastrophe. In this paper, we present an underwater mobile sensor net-work that is being developed to monitor these waste storage pools. This sensing system will also be used in very old storage pools to build maps of their internal structure which can then be used for waste removal and pool decommissioning. In this paper, we outline the unique challenges of our application scenario which include robot localization in cluttered un-derwater environments and the effect of location errors on environment mapping. We also list other industrial applications that can benefit from our underwater sensor network.
    corecore