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Abstract. Nuclear power provides a significant portion of our current
energy demand and is likely to become more wide spread with grow-
ing world population. However, the radioactive waste generated in these
power plants must be stored for around 60 years in underwater storage
pools before permanent disposal. These underwater storage environments
must be carefully monitored and controlled to avoid an environmental
catastrophe. In this paper, we present an underwater mobile sensor net-
work that is being developed to monitor these waste storage pools. This
sensing system will also be used in very old storage pools to build maps
of their internal structure which can then be used for waste removal and
pool decommissioning. In this paper, we outline the unique challenges of
our application scenario which include robot localization in cluttered un-
derwater environments and the effect of location errors on environment
mapping. We also list other industrial applications that can benefit from
our underwater sensor network.

1 Introduction

According to the World Nuclear Association [1], there are a total of 437 oper-
ational nuclear reactors around the world supplying approximately 15% of the
total electricity consumption. In the UK alone, there are 19 nuclear power plants
generating electricity for civilian use and 25 old power plants that are in var-
ious stages of shutdown and decommissioning. As the world population grows,
increased energy demand is likely to make nuclear energy generation more wide
spread. However, the biggest issue associated with nuclear power is the genera-
tion of radioactive waste which must be managed and stored over a long period
of time. This radioactive waste can be classified as low level waste (LLW), in-
termediate level waste (ILW) and high level waste (HLW). Low level waste con-
tains paper, tools, clothing and other material that produce very small amount
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of radioactivity. It is generally incinerated or processed as ordinary waste. In-
termediate level waste comprises of chemicals, resins and metal fuel cladding.
It contains higher amounts of radioactivity and thus requires shielding. It is
sometimes stored in short term storage facilities for a few weeks or months be-
fore being solidified and buried in near surface trenches. Spent nuclear fuel and
products of the fission reaction form high level waste. It generates the highest
amount of radioactivity and thus requires shielding and careful handling. It is
held in interim storage for 20 to 60 years before it can be transferred to perma-
nent disposal sites. Some of these high level wastes can have a half-life ranging
from hundreds of thousands to millions of years and thus require special treat-
ment. The most popular proposal is deep geological disposal in which the waste
would be solidified in glass or ceramic through a process called vitrification and
then buried in very deep rock formations ranging from 300m to 800m below the
earth surface [2]. There are also some proposals to bury these wastes under the
seabed [3].

Although, deep geological disposal is in its advanced stages of research, there
are no fully functional waste disposal repositories available at present. Even if
such repositories were available, it is still necessary to store this waste in cool-
ing ponds for 20 to 60 years to remove the heat that is continuously generated
by this waste. After this extended underwater storage, the amount of heat gen-
erated is reduced to a level that is suitable for deep rock burial. During this
extended underwater storage, the cooling ponds must be carefully monitored
for temperature hot-spots and leakage in storage canisters. We are developing
an underwater mobile sensor network for these nuclear waste storage pools in
collaboration with our partners at University of Manchester and the National
Nuclear Laboratory. This network will consist of a swarm of small scale robots.
Each robot will be approximately 10cm in diameter and will collaborate with
other robots to monitor the conditions inside the storage pool. The cluttered
underwater environment of these pools presents significant difficulties for accu-
rate robot localization. Inaccurate robot positions in turn influence the higher
layer tasks of environment mapping and high density spatial sampling. In this
paper, we discuss these challenges in detail and highlight these issues with our
preliminary results. We also list underwater processes in other industrial appli-
cations outside the nuclear domain that can benefit from our mobile sensing
system.

The rest of this paper is organized as follows. Section (2) introduces the overall
architecture and design of our mobile sensing system. Section (3) outlines the
issues faced by robot localization algorithms and some preliminary experiences.
Section (4) discusses the challenges in performing mapping and exploration tasks.
Section (5) outlines the open issues and a research vision that we intend to
pursue. Section (6) presents the simulation environment that has been set up to
test and analyze the performance of various algorithms. Section (7) lists other
industrial applications of our mobile sensor network. Section (8) reviews related
work and Section (9) concludes this paper.
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2 System Architecture

In this section, we describe our application environment in detail and outline
a high level architecture of our mobile sensing system. There are two different
types of storage pools that we are targeting. In the following, we describe the
differences between these two types and then present our system design.

The first type of storage ponds are modern, well maintained and clean pools.
These are generally indoor concrete structures that are designed to be resistant
to movements generated by events like earthquakes. Their sizes vary with the
largest ones approaching the dimensions of an Olympic sized swimming pool i.e.
50m×25m. These pools can be as deep as 20m and are equipped with pumps and
heat exchangers. The waste is sealed in steel flasks and then put in large skips.
These skips are stacked on top of each other with the help of an overhead crane
assembly. This creates an underwater landscape of rows of towers of skips. The
distance between the surface of water and the top of skip towers is generally one
to two meters. This thick layer of water prevents any radiation from escaping
the pool. Pools are also equipped with cleaning systems to control water quality
that is necessary to prevent any corrosion of storage skips. Fig. (1) shows a
photograph of one such storage pool at a reprocessing facility in the UK. In these
ponds, our mobile sensor network will be used to perform dense spatial sampling
of temperature, pH and radioactivity. It will also be used to monitor for any
leakages. Our specific research objective is to accurately sample temperature and
radioactivity fields in these storage ponds using a swarm of resource constrained
robots.

The second type of storage ponds are very old ponds that were built during
the early 1950s and used until late 1980s. Over the years, a lot of intermediate
and high level waste has been dumped in these ponds. The metal structures

Fig. 1. Modern Storage Pool
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and spent fuel rods in these ponds have decomposed and formed a thick sludge
that has settled on the bottom over time. This sludge may contain pockets
of hydrogen and other solid objects. Visibility inside these ponds is very poor
because of the suspended particulates. Skip towers have also toppled over and the
internal structure is not known. There are no detailed records regarding the exact
contents of these ponds. Some of these ponds are extremely hazardous and only
very little human activity is allowed in the vicinity of these ponds. It is necessary
to gain more information about the internal structure of these ponds so that the
waste can be removed and stored in modern well maintained ponds until deep
geological disposal is available. In these ponds, our specific research objective is
to build accurate maps of the internal structure of the ponds using a swarm of
resource constrained robots. Both tasks of spatial sampling (in new ponds) and
mapping (in old ponds) require robots to be able to localize themselves within
the pond. The main questions discussed in this paper are, how the presence of
clutter - stored nuclear waste - impacts localization errors, and how these errors
influence the spatial sampling and mapping processes.

Fig. (2) shows an overall architecture of our underwater mobile sensing sys-
tem. The storage pond is instrumented with a number of fixed anchor nodes.
These anchor nodes periodically transmit acoustic beacons that are used by mo-
bile nodes to determine their position inside the pool. These nodes also act as
collection sinks and are used to receive data transmitted by robots on the acous-
tic channel. Robots can also communicate with each other and perform distance
measurements among themselves using acoustic signals. This allows the robots
to collaborate with each other during the localization, sensing and mapping
tasks. Both the payload and propulsion system of the underwater robots are
currently under investigation. At this point, it is envisaged that the the pay-
load will initially consist of a pressure sensor to measure depth, a temperature
sensor and a number of obstacle detection sensors that will be based on the

Fig. 2. Underwater Sensor Network Architecture
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(a) Robot Internals (b) Robot size (c) Prototype Robot

Fig. 3. Size comparison of prototype robot

communication and positioning acoustic transducers. There will also be a hard-
ness sensor based on the same technology and an optical based turbidity sensor.
The propulsion system is split into the z plane and x-y plane and will provide
at least 4 degrees of freedom (surge, sway, heave and yaw) [4]. Movement in the
z-plane will come from propellers while the x-y plane movement will be achieved
by a combination of propellers and/or miniaturized vortex ring thrusters [5].
The propulsion systems will be controlled by an embedded system in the form
of a 32-bit microprocessor with DSP. Each robot is expected to be approxi-
mately 10cm in diameter. Fig. (3) shows an initial prototype version of our
robot.

Fig. (4) shows how different components of the software system interact with
each other and the hardware components. The lowest layer consists of various
hardware components that include acoustic communication and ranging, various
sensors and propulsion system. These hardware components are in various stages
of development. Middle level layers are responsible for localizing the robot and
for performing reactive obstacle avoidance. These middle layer components have
been implemented in a simulation environment. The higher layer consists of our
two distinct applications i.e. spatial sampling in new ponds and exploration and
mapping in old ponds.

Fig. 4. Software Architecture
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3 Robot Localization

3.1 Background

Location awareness is a basic requirement for a robot swarm to explore and map
an enclosed underwater environment such as a nuclear waste storage pond. It is
necessary for the robots to have accurate position information not just for actual
mapping but also for navigating through the pond. Anchor nodes, nodes con-
nected to external reference systems that supply positional information, enable
the use of trilateration for localizing robots. The technique exploits geometrical
constraints, given the locations of a number of anchors and distances to them, to
calculate the position. Even though for three-dimensional positioning we require
at least four anchors, the underwater robots we are designing have pressure sen-
sors which can be used to determine the depth (z-coordinate) of the robot. This
obviates the need for a fourth anchor.

Distance measurements to the anchors, in noisy environments, have small
Gaussian errors [6], thus introducing an error in the calculated position. In large
networks, where the number of anchors is small compared to the remaining non-
localized nodes, it could be the case due to the limited transmission range of the
acoustic communication and the attenuating effects of cluttered environments,
that all anchors would not be heard by all the nodes in the network. It is
possible that a particular unpositioned node cannot hear the required number
of anchors in order to calculate its position thus requiring neighbouring nodes
which have already been localized (owing to their proximity to the required
number of anchors) to assist them. These neighbouring nodes are used as virtual
anchors and the process is called iterative localization. However these virtual
anchors, having previously localized themselves, contain inherent errors in their
own positions. These errors, compounded by the noisy distance measurements,
could propagate via successive iterative localization steps. It is vital to control
the propagation of error due to noisy distance measurements and inaccurate
virtual anchors positions.

Iterative localization has been a well researched topic for the past few years.
Collaborative multi-lateration is introduced in [7] where location information
from across multiple hops is used to localize a node. In [8], the authors pro-
pose a method to quantify the errors introduced by virtual anchors and noisy
range measurements. Each node can thus prevent the accumulation of local-
ization errors by maintaining a registry of its neighbouring anchor nodes and
using those anchors in trilateration that have the smallest errors. Another ap-
proach [9] to quantifying error in iterative localization takes into account the
geometric relationships between the anchors during selection. Localization in
underwater environments has also been an active area of research [10]. However,
almost all of this work deals with localizing sensor nodes in open sea environ-
ments [11,12]. Our research, on the other hand, deals with localizing sensing
robots in cluttered underwater environments. This is discussed in detail in the
following subsection.
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3.2 Localization in Cluttered Underwater Environments

One of the primary areas of interest in this project is the challenges faced by
a network of robots in exploring cluttered environments. Clutter is generally
irregularly shaped obstacles that obstruct acoustic propagation paths between
robots or worse introduce multipath acoustic communication.

The underlying concept behind range-based localization is that the distance
between the robot and the anchors can be obtained by sending a communica-
tion signal between them and the distance is derived from the characteristics
of the received signal. In case of acoustic/ultrasound signals, the propagation
time translates into the distance travelled, assuming that we know the velocity
of sound in that particular medium accurately. This, however, hinges on the
assumption that the signal travels straight from the anchor to the non-localized
robot along the shortest path, without bouncing off any obstacles in between.
Such signals are called Line Of Sight (LOS) signals. The measurements from
such signals would yield the least distance errors. However in reality, in cluttered
environments with obstacles between the transmitter and receiver, it is possible
that a large number of signals are Non Line Of Sight (NLOS). Such signals
have large distance measurement errors.

There has been extensive research in the mitigation of non line-of-sight mea-
surements, particularly in cellular network research. It was motivated by the
requirement put forth by Federal Communications Commission (FCC) to cellu-
lar operators to be able to locate a mobile handset within an accuracy of 300
meters for 95% of calls [13]. In current literature [14,15,16,17,18,19,20,21] there
are three general methods to deal with NLOS readings. The first method at-
tempts to identify and use only LOS measurements. Distinguishing NLOS from
LOS distance measurements could either be done using a time-varying hypothe-
sis test [14], a probabilistic model [18] or residual information [15,21]. The second
method incorporates both LOS and NLOS distance measurements with appro-
priate weighting to minimize the contribution of NLOS observations. Here the
primary assumption made is that the number of LOS readings is much greater
than the number of NLOS readings [16,17], which may not be the case in our
underwater cluttered environment. The third method advocates the use of scat-
tering models. This method takes into account the propagation characteristics
of the channel and then directly determines the actual line-of-sight distance us-
ing the NLOS readings using a scattering model [19,20]. However this requires
perfect knowledge of the underwater environment, including the topology and
type of clutter, which may not be possible in most cases.

We have simulated robot localization in the presence of LOS signals and NLOS
signals inFig. (5). InFig. (5a),we see that the smallest localization error is obtained
whenonlyLOSdistancemeasurementsareused. InFig. (5b)wesee that localization
error increases with a smaller number of LOS distance measurements, even though
we have filtered out NLOS measurements. Fig. (5c) shows that using NLOS mea-
surements in addition to LOS measurements gives a large localization error. Hence
we can conclude that not only should we filter out NLOS measurements but also
have enough LOS measurements to get an accurate position estimate.
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(a) LOS anchors only (b) LOS and NLOS anchors

(c) NLOS anchors filtered

Fig. 5. Robot localization errors when LOS distance estimates have a small Gaussian
error (σ = 6.5cm) [6] and NLOS distance estimates have a large constant error (30 cm)

From the preliminary experiments we have conducted, we envisage two sce-
narios as illustrated in Fig. (6). In the first scenario, the clutter is impermeable to
acoustic signals. Here only reflected non line-of-sight (NLOS) signals, which have
large errors in distance estimates, are present. These have to be detected and
filtered from the remaining range measurements before calculating the position.
In the second case, the clutter is actually permeable to acoustic signals whereby
the signal can ’resonate’ through the obstacle without losing all the energy. In
this case, the distance estimate of the NLOS signal would be comparable to that
of a LOS signal.

When the majority of the NLOS measurements are of the first type i.e., re-
flected NLOS, it may be the case that filtering out NLOS measurements (an-
chors) could lead to a non-localized robot not having access to the required
number of anchors. For example, in Fig. (5c), if three of the five measurements
had been NLOS, the non-localized robot would not have been able to calculate
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(a) Non-Permeable Obstacles (b) Permeable Obstacles

Fig. 6. Possible types of obstacles in a nuclear storage tank. Permeable obstacles giving
rise to ’near-LOS’ NLOS range measurements.

its position. Also the reduced number of LOS anchors increases the error in the
position estimate. In this scenario it may become necessary to develop a strategy
to deploy previously localized robots to help their non-localized neighbours to
localize, so as to maximize the chances that a node, at any given position in the
underwater pond, can localize itself accurately. At first we would want to work
with the static case where the robots are stationary. Here emphasis is put on
the initial position of the robots so as to enable all/most of the robots to be
localized.

Now that we have introduced the challenges of robot localization in cluttered
underwater environments, in the next section, we discuss how these localization
errors effect the mapping task.

4 Exploration and Mapping

Creating maps of the bottom of old waste storage ponds where sludge and other
particulate material has settled down over long periods of time is an important
aspect of our mobile sensing system. In order to create these maps, the robots
must be aware of their surroundings as well so that they can safely move around
in the pond without colliding with the waste storage canisters. Thus, to accom-
plish this task, the robots must explore and map the entire pond. These robots
must also collaborate with each other to map the environment efficiently. In
this section, we discuss some related work on robotic mapping and exploration,
and outline the challenges of performing the mapping task in the pesence of
robot localization errors. We also present some preliminary simulation results
that highlight these issues.

When a robot is placed in an unknown environment and it does not have
access to any location information, it has to determine its location and build the
map of the environment at the same time. This problem is known as Simultane-
ous Localization and Mapping (SLAM) or Concurrent Mapping and Localization
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(CML) and has received considerable attention from the robotics research com-
munity. Smith and Cheeseman [22] used an Extended Kalman Filter (EKF)
to solve the SLAM problem for the first time and since then it has been a
highly active field of research. Thrun [23] provides an extensive survey of SLAM
techniques.

When the location information is available to a robot, the problem of mapping
the environment becomes easier as compared to SLAM. However, noisy sensor
measurements and complex environments can still pose significant challenges to
mapping and exploration algorithms. The most widely used family of algorithms
used to map environments with known robot locations is called Occupancy Grid
Mapping. Occupancy grid based mapping was introduced by Elfes [24] and later
a Bayesian statistical basis of this approach was developed by Moravec [25].
Moravec [26] also extended this approach to build three-dimensional maps us-
ing stereo cameras. Occupancy grids have also received a wider acceptance in
robotics because they are commonly used as input to algorithms for path plan-
ning, collision avoidance, sensor fusion etc. In our system, a group of anchor
nodes provide an infrastructure that is used by robots to determine their posi-
tions. Therefore, we use occupancy grids for building the maps of underwater
environments of the storage pools.

The basic idea of occupancy grid mapping is that the space that has to be
mapped is divided in small uniform sized cells, for example, 10cm × 10cm. For
each cell, the robot maintains a probabilistic belief about the occupancy of the
cell. In the beginning, no information is available and the status of each cell is
unknown. As the robot moves around, it gathers measurements from its percep-
tion sensors (e.g. sonar, laser range finder, stereo cameras or some other sensor)
and the corresponding cells are updated with these measurements according to
a Bayesian reasoning approach. In order to determine which cells to update, the
robot must know its position in the environment and the characteristics of its
sensors. For example, if a robot is using a sonar sensor to perceive its environ-
ment, then all the cells mi of the occupancy grid that lie within the beamwidth
of sonar sensor are updated according to the Bayes rule using the log odds rep-
resentation as,

lt,i = lt−1,i + log
p (mi|xt, zt)

1− p (mi|xt, zt)
(1)

where xt is the location of the robot at time t, zt is the sonar measurement
and p is the occupancy probability derived from a sensor model given the range
measurement zt returned from the sonar and lt,i is

lt,i = log
p (mi|x1:t, z1:t)

1− p (mi|x1:t, z1:t)
(2)

Generally, the log odds of prior probability l0 is set to zero for all cells mi. The log
odds representation provides an easy update rule in the form of Eq. (1). When
it is required to determine whether a cell mi is occupied or free, the probability
p (mi|x1:t, z1:t) can be recovered as
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p (mi|x1:t, z1:t) = 1− 1
1 + exp (lt,i)

(3)

and compared against thresholds thres-occ and thres-free to decide on its
occupancy,

p (mi|x1:t, z1:t)

⎧⎪⎨
⎪⎩

≥ thres-occ mi is occupied
≤ thres-free mi is free
otherwise mi is unknown

(4)

The probabilistic belief for each cell in the grid is derived using sensor measure-
ments and robot location. Therefore, any measurement or location error affects
the occupancy grid. We have shown in Section (3) that the cluttered environ-
ment of the storage pools can introduce significant errors in estimated robot
positions. These location errors in turn introduce anomalies in the storage pool
maps built by robots in the form of occupancy grids. Fig. (7a) shows a 6m ×
6m simulated pool where two towers of storage skips have been placed. Anchor

(a) Simulated Cluttered Pond

(b) Mapping without loca-
tion errors

(c) Mapping with location
errors

Fig. 7. Mapping in cluttered ponds
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nodes have been placed at four out of the eight corners of pool and a single
robot moves through this lightly cluttered pool localizing itself through single-
hop trilateration. For direct line of sight distance estimates, a small error from
a normal distribution N(0, σ) with σ = 5cm is introduced. For non line of sight
distances between the anchors and robots, a uniform distribution U(0, b) with
b = 30cm is used to introduce errors. The robot uses sonar measurements and its
estimated location to build a 2D map of the simulated pool using frontier based
exploration and mapping [27]. A number of such 2D maps can be built at various
depths to create a three dimensional map of the environment. Further details
of our simulation environment are described in Section (6). Fig. (7b) shows a
2D map that is built using the perfect location information without any errors.
Fig. (7c), on the other hand, shows a map when the estimated robot location
contains significant errors due to non line of sight (NLOS) distance estimates
between the robot and the anchor nodes. These location errors not only distort
the map but since the partial map is also used by the robot for exploration and
path planning, they also affect the efficiency of the mapping process. Our aim is
to quantify the effect of these errors on the mapping process and then develop
efficient exploration strategies that can mitigate the effect of these errors on the
mapping process.

5 Open Research Issues

Now that we have described the specific challenges of robot localization and its
effects on mapping and exploration tasks in the previous two sections, we now
present a vision that we intend to pursue in our future research. We envisage
three different types of environment mapping systems using our swarm of robots.
In the following, we outline these three systems and the individual questions that
we intend to answer for each of these systems.

Our first system consists of robots that have been classified in two different
categories depending on their role. We term the robots belonging to the first
category as localizers and those belonging to the second category as explorers.
The role of the localizer robots is to position themselves in such a manner that
the explorer robots can localize themselves and thus explore the cluttered envi-
ronment. The main challenge of this approach is to optimally place localizers so
that the explorers can build an accurate map of the environment.

In our first system, there is no feedback mechanism between the localization
and the exploration tasks. Explorers only explore those regions where the localiz-
ers are available to provide positioning infrastructure. In the second system that
we envisage an explicit feedback mechanism is available between the explorers
and localizers. Thus the explorers can request the localizers to move to a certain
region to provide positioning infrastructure so that that region can be explored
and mapped. The main challenge of this approach is to design efficient resource
allocation strategies that can be used to assign localizers to explorers.

In our third system, there is no distinction of roles and each robot performs
both of the tasks simultaneously i.e. each robot not only explores and maps the
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environment but it also helps its neighboring robots to localize themselves. Thus
in this final system, these tasks are very tightly coupled. The main challenge of
this approach is to design an efficient coordination strategy among the robots
that maximizes the accuracy of the built map.

The specific question that we would like to answer is which one of these three
systems can perform environment mapping more accurately given a fixed number
of robots, limited energy and the harsh cluttered environment.

6 Simulation Environment

The target scenario of our research project is cluttered underwater environments.
This is a unique application scenario that has not been extensively addressed
in research literature. Although, there is a large body of work on underwater
robots, most of the readily available robot simulators do not provide any means
of simulating underwater environments. Stage is probably the most widely used
simulator in robotic research community. It provides a 2D environment in which
virtual robots can be spawned and controlled by clients. It is generally used with
Player [28] which provides a set of standard interfaces. Stage uses very simple
and computationally efficient models for the virtual robots and sensors. The
advantage of this approach is that the simulation can be scaled to a very large
number of robots. However, these simple models do not provide enough details
to emulate actual environments and robot behaviours. The 2D nature of the
simulator is also very limiting if the robots have higher mobility, for example,
three dimensional movement. This limitation makes it unsuitable for our research
where the robots are being specifically designed to move in a three dimensional
space. Gazebo [29] is an open source 3D simulator that can be used with Player.
It uses an open source physics engine called Open Dynamics Engine [30] to
provide detailed simulation of Newtonian physics of rigid body systems. The
three dimensional virtual environment is described in XML format in a world
file. Gazebo seems to address the issues with Stage by providing 3D environments
and detailed dynamics simulations. However, the most limiting factor of Gazebo
is the use of a text based world file for describing the virtual environments. This
approach makes it extremely difficult to design and test complex scenarios.

USARSim is based on a commercially available industrial strength game en-
gine called Unreal by Epic Games [31]. The game can be bought at a small cost
of £20 to £30 and the simulator is an open source free software. Unreal gaming
environment has an integrated physics engine called Karma [32] that provides
high fidelity Newtonian physics simulations for rigid bodies and joint systems.
An additional benefit of using the gaming engine is the availability of good qual-
ity graphics rendering and visual feedback. By off loading these two important
tasks to the gaming engine, USARSim makes it easy for a user to focus on
algorithm development for the application. However, the user is still forced to
make realistic assumptions due to the high fidelity simulation of the behaviour of
robot and its interaction with the surrounding environment. USARSim relies on
Gamebots [33] to provide a TCP/IP interface to the outside world. This allows
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Fig. 8. Structure of USARSim

the controller programs to connect to the simulation environment and spawn
and control different robots. Fig. (8) shows the overall structure of USARSim
simulator and how different components fit together.

Unreal gaming engine also ships with a 3D editor UnrealEd that can be used
to easily create 3D virtual environments. It includes all the necessary facilities
to easily create the target environments for our research. The most important of
these facilities is the ability to create a Water Volume. A water volume is a region
of space where the physics engine modifies its behaviour to simulate a fluid. Thus,
in a water volume, a robot experiences fluid friction and buoyancy in addition
to gravity. It is also possible to change the default values of these parameters
to match those of an actual pond. Using UnrealEd, we have created virtual 3D
storage pools. We can also create towers of skips and other clutter of different
sizes in these simulated pools. Therefore, this simulation set up can faithfully
reproduce the actual storage pools in the virtual simulated environment.

(a) UnrealEd (b) USARSim

Fig. 9. Screenshot of the simulated pond and the robot
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Due to the above mentioned benefits, we decided to use USARSim for investi-
gating the mapping, exploration and localization algorithms for our underwater
mobile sensing system. Fig. (9) shows a screen shot of one of the pools in Un-
realEd and a robot moving around in this pool in the USARSim simulator.

7 Other Industries

The technologies and the algorithms developed during the course of this re-
search can be used in a wide range of applications in addition to nuclear waste
monitoring. In this section, we outline some of the potential industries that
operate aqueous environments similar to waste storage ponds and thus can sig-
nificantly benefit from a networked mobile sensing system for these underwater
environments.

Industrial scale process monitoring in chemical industry is an area that can
benefit from our contributions. A large portion of these processes involve large
scale vessels where different chemicals are mixed together. For these processes,
the chemical engineers are generally interested in temperature, pressure, con-
centration of chemicals, turbidity and other parameters inside the vessel. At the
moment, the only technique available to measure some of these parameters is
tomography where sensors are placed outside the vessel. However, only some of
the above parameters can be estimated using tomography. Another disadvantage
of tomography is that it offers very limited spatial and temporal resolution. A
swarm of our submersible robots can be placed inside such vessels to perform
high density spatial measurements of all of these parameters. These measure-
ments would allow the chemical engineers to develop a better understanding of
these chemical processes. This data can then also be used to redesign and im-
prove the chemical processes in terms of energy savings and material usage. The
robots can also be used to monitor the wear and tear of reaction vessels from
the inside.

Almost all of the chemical plants have large scale settling ponds that are
used to clean water after it has been used in a chemical process. These ponds
are generally outdoors and could be as big as 100m in diameter. These settling
ponds are filled with water and the particulates in water are allowed to settle
down. The water is then drained off and recycled. Any leakage in these ponds
can have a detrimental effect on the surrounding environment. Therefore, it is
necessary to monitor these ponds for any such leakages. Current methods used
for these inspections are manual and thus expensive and time consuming. Our
system of networked robots can be used to continuously monitor the pond for
any anomalies at significantly reduced costs.

Another industry where our mobile sensor system can be used is sewagewastew-
ater treatment.Thewastewater generatedby our cities and communities is on aver-
age 99.94%water by weight and only 0.06%solid waste [34]. Wastewater treatment
plants collect this sewage and process it in an extensive network of chambers and
ponds to separate these solid wastes from the water. The first stage of this net-
work is similar to settling ponds mentioned above where the water is held for few
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hours and the solid waste is allowed to settle down. The second stage consists of a
large number of aeration ponds where microorganisms are used to breakdown the
dissolved waste materials. This process is similar to essentially what happens in
nature. However, in a wastewater treatment plant the speed of this process has to
increased toprocess the largequantities ofwater.Therefore, it is necessary to create
optimum conditions for microorganisms in these ponds. This includes mixing the
right quantities of oxygen and nutrients in these ponds. Our mobile sensor network
can be used in these ponds to monitor the concentration of these substances. Using
these observations, the plant engineers can control the amount of oxygen and nu-
trients injected into the ponds as the wastewater concentration changes every few
hours during the course of the entire day.

8 Related Work

In this section, we outline some of the related work to put our research in proper
perspective. We discuss some underwater autonomous robots and robotic swarm
systems and highlight the challenges that differentiate our research from these
efforts.

It is generallymore difficult to workwith underwater environments as compared
to the terrestrial one and therefore the development of underwater robots and espe-
cially autonomous underwater vehicles (AUVs) has been relatively slow. However,
the military, scientific and commercial applications of these autonomous underwa-
ter vehicles has contributed to a very rapid progress in recent years. A database
of currently available AUVs hosted by Autonomous Undersea Systems Institute
lists a total of 103 AUVs available from 51 different manufacturers [35]. More so-
phisticated systems that consist of swarms of cooperating AUVs, nodes anchored
to the seabed and floating buoys have also been developed. Autonomous Ocean
Sampling Network [36] and Autonomous Systems Network [37] are a couple of
examples of such underwater networked sensing systems. The deployment and
coverage analysis of such underwater sensing systems has also been studied [38].
However, almost all of these platforms and networked systems are targeted to-
wards and deployed in open ocean environments. Open sea is an extremely vast
environment that presents its own unique challenges. The AUVs used in this en-
vironment are relatively large in size and have significant movement, sensing and
computational resources available on board. Networks of such vehicles are also
of relatively large size with individual communication links usually stretching to
tens of kilometers. Our application, on the other hand, requires the development
of very small scale robots that can move in cluttered aqueous environments with
dimensions ranging from tens to a few hundred meters. In addition to being
small, these robots must have enough resources to safely navigate, sense and
map these constrained cluttered ponds.

Serafina is a small scale AUV developed at Australian National University [39].
It is 50cm long and weighs around 5kg. It has five fixed thrusters with two
in horizontal and three in vertical configuration. These thrusters provide five
degrees of freedom of movement to the AUV. An inertial sensor and a compass
are used to perform attitude control and communication among different nodes
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is achieved through a long wave radio with a carrier frequency of 122.88kHz. The
relative distance and heading of nearby nodes in a swarm of Serafina vehicles is
determined by using a pair of hydrophones to receive acoustic signals. However,
the performance of these techniques has only been measured in a small tank
with clear line of sight and without any clutter [40]. Kalantar and Zimmer [41]
have also proposed swarming algorithms to track and map environmental fields
like chemical concentration spread and ocean bottom mapping.

Researchers have always looked towards nature to draw inspiration for their
own creations and this has resulted in various bio-mimetic robots. The robotic
fish [42] developed at University of Essex is one such underwater autonomous
robot. It uses the oscillatory movement of its body just like an actual fish
to propel itself through water instead of using the traditional propeller based
propulsion systems. It can move autonomously in an unknown environment in a
complete 3D manner. Researchers at University of Essex are proposing to use
these autonomous robots for pollution monitoring in sea ports. The current gen-
eration of this robot is 52cm long. Three servo motors and mechanical joints are
used to generate the oscillatory movement of the body. Four IR sensors and one
sonar sensor is used for obstacle detection. However, at the moment there is no
communication functionality available to exchange information between differ-
ent robotic fishes. Therefore, these robots cannot collaborate with each other to
form swarms of mobile sensors.

Hydron was developed as part of the Hydra project [43]. It is a very small
underwater robot that has a roughly spherical shape with approximately 11cm
diameter. Movement in the horizontal direction is achieved by expelling water
that is drawn in through an impeller from one of the four nozzles selected through
a rotating collar. A syringe is used to draw in or expel the water through the
bottom. This alters the buoyancy of the robot and thus allows movement in
vertical direction. Each hydron robot can communicate with other units with
short range optical transceivers. Hydron robots were developed as basic units
that could act as building blocks to automatically form more complex struc-
tures by rearranging themselves around each other. However, these units are not
equipped with localization facilities that could allow them to determine their
position in the aqueous environment.

The cluttered nature of industrial ponds creates a very harsh environment
for communication and positioning systems and the focus of our research is to
address this challenge at each individual layer of our mobile sensing system
ranging from low level distance estimation to application level mapping and
exploration algorithms. This is a unique application scenario and to the best
of our knowledge has never been addressed before. The robotic platforms and
sensing systems that we discussed in this section are either too large for our
purposes or have never been tested in our unique application scenario.

9 Conclusion

In this paper, we discussed a novel application of nuclear waste storage pool mon-
itoring and outlined a detailed architecture of our proposed underwater mobile
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sensor network for monitoring these pools. We described the difficulties faced by
robot localization and environment mapping algorithms due to the cluttered and
enclosed nature of these underwater environments with preliminary results. We
outlined the future research challenges of our unique application and also high-
lighted various other industrial applications that can potentially benefit from
our underwater mobile sensor network.
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Abstract. Low power and small footprint IEEE 802.15.4/ZigBee based devices 
are a promising alternative to 802.11a/b/g and proprietary protocols for  
non-critical patient monitoring under important scenarios such as post-op and 
emergency rooms. However, their use in a healthcare facility to monitor several 
mobile patients poses several difficulties, mainly because these protocols were 
primarily designed to operate in low traffic load scenarios. This work presents 
simulation results used to evaluate the performance of an IEEE 802.15.4/ Zig-
Bee based wireless sensors network (WSN) in a vital signs monitoring scenario, 
for both star and tree based network topologies. The scalability problem in non-
beacon enabled networks is addressed to quantify the degradation in quality of 
service (QoS) markers when the number of sensor nodes increase. Additionally, 
the impact of hidden nodes is assessed for the star topology. Results indicate 
that, to achieve a delivery ratio (DR) higher than 99%, the number of electro-
cardiogram (ECG) nodes in a star network must not exceed 35. However, con-
sidering a tree topology, the maximum number of nodes must be reduced to 18 
to maintain the same DR. The network performance is severely impacted by 
hidden nodes. For instance, in the absence of hidden nodes, a star network  
consisting of 32 ECG nodes presents a DR higher than 99%; however, if the 
percentage of hidden nodes is increased to 5%, it drops to 94%. If the same per-
centage of hidden nodes is maintained, it is necessary to reduce the number of 
nodes to 13 to reestablish a 99% DR.   

Keywords: ZigBee, wireless sensor networks, e-Health, remote vital signs 
monitoring. 

1   Introduction 

Non-critical patients can greatly benefit from continuous vital signs monitoring based 
on WSN technologies.  WSNs are comprised of a large number of spatially distrib-
uted small devices with sensing, processing and radio communication capabilities [1]. 
Low power consumption, topology adaptation in response to changes in propagation 
conditions or node failures, and multi-hop routing, among other important features, 


