629 research outputs found

    Small Scale AES Toolbox: Algebraic and Propositional Formulas, Circuit-Implementations and Fault Equations

    Get PDF
    Cryptography is one of the key technologies ensuring security in the digital domain. As such, its primitives and implementations have been extensively analyzed both from a theoretical, cryptoanalytical perspective, as well as regarding their capabilities to remain secure in the face of various attacks. One of the most common ciphers, the Advanced Encryption Standard (AES) (thus far) appears to be secure in the absence of an active attacker. To allow for the testing and development of new attacks or countermeasures a small scale version of the AES with a variable number of rounds, number of rows, number of columns and data word size, and a complexity ranging from trivial up to the original AES was developed. In this paper we present a collection of various implementations of the relevant small scale AES versions based on hardware (VHDL and gate-level), algebraic representations (Sage and CoCoA) and their translations into propositional formulas (in CNF). Additionally, we present fault attack equations for each version. Having all these resources available in a single and well structured package allows researchers to combine these different sources of information which might reveal new patterns or solving strategies. Additionally, the fine granularity of difficulty between the different small scale AES versions allows for the assessment of new attacks or the comparison of different attacks

    Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis

    Get PDF
    Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of autoimmune diseases, not least for their critical role in the regulation of regulatory T cell (Treg) function. Deregulated expression of miR-146a and miR-155 has been associated with rheumatoid arthritis (RA). We therefore investigated miR-146a and miR-155 expression in Tregs of patients with RA and their possible impact on Treg function and disease activity. Methods: Expression of miR-146a and miR-155 was assessed in RA patients and controls. MiRNA expression was correlated with disease activity and expression of target genes. Interference with biological activity of miRNAs was evaluated in functional Treg assays. Results: Diminished upregulation of miR-146a and miR-155 in response to T cell stimulation was found in Tregs of RA patients. Diminution of miR-146a expression was observed in particular in patients with active disease, and correlated with joint inflammation. In patients with active RA, Tregs demonstrated a pro-inflammatory phenotype characterised by inflammatory cytokine expression. This was due to an augmented expression and activation of signal transducer and activator transcription 1 (STAT1), a direct target of miR-146a. Conclusions: Our results suggest that in RA miR-146a facilitates a pro-inflammatory phenotype of Tregs via increased STAT1 activation, and contributes thereby to RA pathogenesis

    The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis

    Get PDF
    Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants

    Deformations of modules of maximal grade and the Hilbert scheme at determinantal schemes

    Full text link
    Let R be a polynomial ring and M a finitely generated graded R-module of maximal grade (which means that the ideal I_t(\cA) generated by the maximal minors of a homogeneous presentation matrix, \cA, of M has maximal codimension in R). Suppose X:=Proj(R/I_t(\cA)) is smooth in a sufficiently large open subset and dim X > 0. Then we prove that the local graded deformation functor of M is isomorphic to the local Hilbert (scheme) functor at X \subset Proj(R) under a week assumption which holds if dim X > 1. Under this assumptions we get that the Hilbert scheme is smooth at (X), and we give an explicit formula for the dimension of its local ring. As a corollary we prove a conjecture of R. M. Mir\'o-Roig and the author that the closure of the locus of standard determinantal schemes with fixed degrees of the entries in a presentation matrix is a generically smooth component V of the Hilbert scheme. Also their conjecture on the dimension of V is proved for dim X > 0. The cohomology H^i_{*}({\cN}_X) of the normal sheaf of X in Proj(R) is shown to vanish for 0 < i < dim X-1. Finally the mentioned results, slightly adapted, remain true replacing R by any Cohen-Macaulay quotient of a polynomial ring.Comment: 24 page

    Duality in Heterotic Vacua With Four Supercharges

    Full text link
    We study heterotic vacua with four supercharges in three and four space-time dimensions and their duals obtained as M/F-theory compactified on Calabi-Yau fourfolds. We focus on their respective moduli spaces and derive the Kahler potential for heterotic vacua obtained as circle compactifications of four-dimensional N=1 heterotic theories. The Kahler potential of the dual theory is computed by compactifying 11-dimensional supergravity on Calabi-Yau fourfolds. The duality between these theories is checked for K3-fibred fourfolds and an appropriate F-theory limit is discussed.Comment: 28 pages, LaTe

    Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome.

    Get PDF
    Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities

    Unimodality Problems in Ehrhart Theory

    Full text link
    Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart h∗h^*-vector. Ehrhart h∗h^*-vectors have connections to many areas of mathematics, including commutative algebra and enumerative combinatorics. In this survey we discuss what is known about unimodality for Ehrhart h∗h^*-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al. (eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This version updated October 2017 to correct an error in the original versio

    The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis

    Get PDF
    Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants
    • 

    corecore