
Small Scale AES Toolbox: Algebraic and Propositional
Formulas, Circuit-Implementations and Fault Equations

Maël Gay2, Jan Burchard1, Jan Horáček2, Ange-Salomé Messeng Ekossono2, Tobias Schubert1,
Bernd Becker1, Martin Kreuzer2, Ilia Polian2

1 Albert-Ludwigs-University Freiburg
Georges-Köhler-Allee 051, 79110 Freiburg, Germany

2 University of Passau
Innstraße 33 & 43, 94032 Passau, Germany

Abstract. Cryptography is one of the key technologies ensuring security in the digital
domain. As such, its primitives and implementations have been extensively analyzed both
from a theoretical, cryptoanalytical perspective, as well as regarding their capabilities to
remain secure in the face of various attacks.
One of the most common ciphers, the Advanced Encryption Standard (AES) (thus far)
appears to be secure in the absence of an active attacker. To allow for the testing and
development of new attacks or countermeasures a small scale version of the AES with a
variable number of rounds, number of rows, number of columns and data word size, and a
complexity ranging from trivial up to the original AES was developed.
In this paper we present a collection of various implementations of the relevant small scale
AES versions based on hardware (VHDL and gate-level), algebraic representations (Sage
and CoCoA) and their translations into propositional formulas (in CNF). Additionally, we
present fault attack equations for each version.
Having all these resources available in a single and well structured package allows researchers
to combine these different sources of information which might reveal new patterns or solving
strategies. Additionally, the fine granularity of difficulty between the different small scale
AES versions allows for the assessment of new attacks or the comparison of different attacks.

1 Introduction

The Small Scale AES cipher is a family of smaller variants of the AES [1] and was introduced in [2].
The basic cryptographic functions are similar those used by AES, consisting of the usual SubBytes,
ShiftRows, MixColumns and AddRoundKey operations. The reduction in complexity and size is
achieved by lowering the block size from the original 16 bytes (usually arranged as a 4× 4 matrix)
to arbitrary smaller matrix sizes as well as a choice between 4 and 8-bit per entry. Unlike other
small or lightweight ciphers, the small scale AES variants are not meant to be cryptographically
secure. Instead, their main field of application is research: The original AES has, thus far, proven
to be secure in the absence of an active attacker. Hence, developing and testing possible attacks
requires a simplified cipher which reduces the required computation and helps gauge these new
attacks.

To the authors knowledge, the concept of the small scale AES has not been transformed into
real hardware until now. With this paper we introduce a hardware implementation in VHDL which
can, for example, be used in combination with a FPGA. In addition, we also provide a collection of
formulas which allow for a theoretical analysis of the cipher using algebraic or propositional solvers.

In detail we present the following contribution for each small scale AES variant:

– Hardware implementations in behavioral VHDL as well as on gate level (Section 2).
– Fault attack equations which can be used to calculate the secret key with only one or two fault

injections (Section 3).
– Algebraic representations for the computer algebra software Sage [3] as well as CoCoa [4]
(Section 4).

– Propositional formulas derived from the hardware implementations and the algebraic represen-
tations (Section 5).

All files are freely available for download (link at the end of the paper).



2 Hardware Implementations

2.1 VHDL

The small scale AES is an entirely parameterizable cipher. In the definition of the small scale AES,
it is possible to choose the size of words (4 or 8-bits), the number of rows (R) and columns (C)
of the block matrix (1, 2 or 4), the number of rounds (1 to 10) and the presence or absence of a
MixColumns in the last round. We identify the small scale AES versions by the tuple RC.

All different operations, such as MixColumns or ShiftRows, are different depending on these
parameters. Hence, the choice was made to divide the implementation into 18 different implemen-
tations, related to those parameters.

The number of rounds and the presence of the last MixColumns can be specified directly in the
implementation as generic values (set by default to 10 and 0, respectively). As inputs the circuits
require the data to process, the key and the mode (encryption or decryption). The produced output
is the processed data (cipher or plaintext).

The implementation was split according to the number of rows and columns but it is also divided
into components corresponding to each operation as follows.

Main

Encryption Decryption

RoundKey Schedule Inverse Round Key Schedule

MixColumns SBox Inverse SBox Inverse MixColumns

For each small scale AES variant we created a VHDL implementation with generic inputs for
the number of rounds and whether to omit the last MixColumns operation (as in full-scale AES).
Generally, each operation is implemented as a module. Hence, different realizations could easily be
tested and compared. The exception from this rule are the ShiftRows and ShiftRows operations
which are performed directly in the round function, as they are simple operations.

2.2 Gate Level

The gate level representation is obtained by mapping the VHDL implementation to the 45NM
NanGate cell library [5]. The result is a combinational circuit which performs the encryption or
decryption operation and could be implemented directly on any hardware.

3 Fault Attack Equations

A differential fault analysis of the AES using a single fault was introduced in [6]. We generalize
these results to each instance of the Small Scale AES.

In the formulas we use the following notation: δi is the XOR difference of the words at the
chosen spot. S() and S−1() are respectively the SBox and the inverted SBox functions. xi and x′i
stand for the correct cipher and the faulty cipher, ki is the key.

The number of rows and columns affects the way the fault will propagate through the last
rounds. This leads to some differences on the fault equations between each instance of the Small
Scale AES which can be classified into three different groups: the number of rows is inferior to the
number of columns, there are equally many rows and columns or the numbers of rows is superior
to the number of columns. The next section provides an example for each group.

In addition, the fault equations also differ when the MixColumns operation in the last round is
omitted.



3.1 Equations Without the Last Mix Columns

The encryption process is traced back until right after the last MixColumns in order to get the
fault equations. As previously discussed, the equations differ depending on the relation between
the number of rows and columns.

The obtained equations are processed by trying all possible δi and ki, as shown in [6], until the
secret key is obtained.

R < C The propagation of the fault can be seen in Figure 1.

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f f 3f

2f

F1

F2

F1

F2

3F1

2F1

2F2

3F2

A1

A2

A3

A4

A1

A2

A3

A4

With last MC

10th MCB1

B2

B3

B4

B5

B6

Fig. 1. Fault propagation when the number of rows is lower than the number of columns, exemplary for
RC = 24. The fault does not propagate sufficiently.

The fault does not propagate sufficiently to recover the whole key in the end. Hence, a second
fault injection on the fifth element of the state matrix is required. This can occur either at the
same time or on a subsequent encryption. For RC = 24 the following equations are obtained:

3δ1 = S
−1

(x1 ⊕ k1)⊕ S−1
(x
′
1 ⊕ k1) 3δ3 = S

−1
(x5 ⊕ k5)⊕ S−1

(x
′
5 ⊕ k5)

2δ1 = S
−1

(x8 ⊕ k8)⊕ S−1
(x
′
8 ⊕ k8) 2δ3 = S

−1
(x4 ⊕ k4)⊕ S−1

(x
′
4 ⊕ k4)

2δ2 = S
−1

(x7 ⊕ k7)⊕ S−1
(x
′
7 ⊕ k7) 2δ4 = S

−1
(x3 ⊕ k3)⊕ S−1

(x
′
3 ⊕ k3)

3δ2 = S
−1

(x6 ⊕ k6)⊕ S−1
(x
′
6 ⊕ k6) 3δ4 = S

−1
(x2 ⊕ k2)⊕ S−1

(x
′
2 ⊕ k2)

R = C The fault is fully propagated as shown in Figure 2.
In the example of RC = 44 the following equations are obtained:

2δ1 = S
−1

(x1 ⊕ k1)⊕ S−1
(x
′
1 ⊕ k1)

δ1 = S
−1

(x14 ⊕ k14)⊕ S−1
(x
′
14 ⊕ k14)

δ1 = S
−1

(x11 ⊕ k11)⊕ S−1
(x
′
11 ⊕ k11)

3δ1 = S
−1

(x8 ⊕ k8)⊕ S−1
(x
′
8 ⊕ k8)

R > C For this case the fault propagation is shown in Figure 3.
There is too much fault propagation, which results in more complex equations. One way to

address this issue is to inject the fault one round later (for example on the ninth round instead of
the eighth). If there are only two columns, then two fault injections are needed (simultaneously or
not), as in the following example, where RC = 42.

2δ1 = S
−1

(x1 ⊕ k1)⊕ S−1
(x
′
1 ⊕ k1) 2δ2 = S

−1
(x5 ⊕ k5)⊕ S−1

(x
′
5 ⊕ k5)

δ1 = S
−1

(x6 ⊕ k6)⊕ S−1
(x
′
6 ⊕ k6) δ2 = S

−1
(x2 ⊕ k2)⊕ S−1

(x
′
2 ⊕ k2)

δ1 = S
−1

(x3 ⊕ k3)⊕ S−1
(x
′
3 ⊕ k3) δ2 = S

−1
(x7 ⊕ k7)⊕ S−1

(x
′
7 ⊕ k7)

3δ1 = S
−1

(x8 ⊕ k8)⊕ S−1
(x
′
8 ⊕ k8) 3δ2 = S

−1
(x4 ⊕ k4)⊕ S−1

(x
′
4 ⊕ k4)



8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f f 2f

f

f

3f

F1

F2

F3

F4

F1

F2

F3

F4

2F1

F1

F1

3F1

F4

F4

3F4

2F4

F3

3F3

2F3

F3

3F2

2F2

F2

F2

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A1

A6

A11

A16

A2

A7

A12

A13

A3

A8

A9

A14

A4

A5

A10

A15

With last MC

10th MC

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

Fig. 2. Fault propagation with an equal number of rows and columns, exemplary for RC = 44. The fault
propagates just enough to change the entire matrix.

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f f 2f

f

f

3f

F1

F2

F3

F4

F1

F2

F3

F4

2F1 ⊕ F3

F1 ⊕ 3F3

F1 ⊕ 2F3

3F1 ⊕ F3

F4 ⊕ 3F2

F4 ⊕ 2F2

3F4 ⊕ F2

2F4 ⊕ F2

A1

A2

A3

A4

A5

A6

A7

A8

A1

A6

A11

A16

A2

A7

A12

A13

With last MC

10th MC

B1

B2

B3

B4

B5

B6

B7

B8

Fig. 3. Fault propagation when the number of rows is larger than the number of columns, exemplary for
RC = 42. The fault propagates through the entire matrix but introduces too many changes resulting in
more complex equations.

3.2 Reduction of the Key Space

It is possible to add a second step to reduce the key space by using the key schedule equations,
similar to the method presented in [6]. This greatly decreases the computational effort required to



acquire the correct key. The key schedule being slightly different for the small scale AES, here is
one example of equations for RC = 44 that can be used to reduce the key space.

k
−1
1 = S

(
k16 ⊕ k12)⊕ k1 ⊕ κi k

−1
5 = k5 ⊕ k1 k

−1
9 = k9 ⊕ k5 k

−1
13 = k13 ⊕ k9

k
−1
2 = S

(
k15 ⊕ k11)⊕ k2 k

−1
6 = k6 ⊕ k2 k

−1
10 = k10 ⊕ k6 k

−1
14 = k14 ⊕ k10

k
−1
3 = S

(
k14 ⊕ k10)⊕ k3 k

−1
7 = k7 ⊕ k3 k

−1
11 = k11 ⊕ k7 k

−1
15 = k15 ⊕ k11

k
−1
4 = S

(
k13 ⊕ k9)⊕ k4 k

−1
8 = k8 ⊕ k4 k

−1
12 = k12 ⊕ k8 k

−1
16 = k16 ⊕ k12

3.3 Equations With the Last Mix Columns

If the MixColumns operation is performed in the last round one equation becomes dependent on a
full column instead of a simple key part ki.

This increases the size of the exhaustive search that we have to go through, instead of going
through δi and ki, we have to go through a tuple of ki. In the worst case scenario, when RC = 44,
this is equivalent to a 232 exhaustive search. Fortunately, with one fault injection, we also get
several equations that involve the same key-tuple, thus already leading to a key space reduction.

Another noticeable thing is that, in the case RC = 42, it is not needed to inject two faults to
get the full key. Thanks to the dependence on one column, it is possible to get the whole key with
only one fault injection.

4 Algebraic Representations

In the section we will show how to rewrite the small scale AES cipher and fault equations given
above into the polynomial form. Let us start with the fault equations.

If we are dealing with 4-bit resp. 8-bit version, we introduce 4 resp. 8 new polynomial equations
over the finite field F2 per one “old” fault equation and 4 resp. 8 new variables per one “old” variable
in the fault equations. The main idea is as follows: we split word variables into bit variables and on
this level we find polynomial relations between input and output bits of the transformations.

We represent F24 ' F2[α]/〈α4 + α + 1〉 and F28 ' F2[α]/〈α8 + α4 + α3 + α2 + 1〉. Then we
can perform the field multiplication or addition in this representation. E.g. the bits (a3, a2, a1, a0)
corresponds to a = a3α

3 + a2α
2 + a1α + a0 ∈ F24 in the 4-bit version. Thus we can easily find

polynomial relations for the field multiplication and the addition (i.e. XOR in this situation) on
the bit level.

The inversion of the S-boxes (both 4-bit and 8-bit version) can be rewritten as a system of
polynomials mapping the input bits to the output bits, because every map over finite field is in fact
a polynomial map. This might be done with the Buchberger Möller algorithm ([7], Thm. 6.3.10).
For example for the 4-bit version we obtain:

y0 = x0x1x2 + x0x2x3 + x1x2x3 + x1x2 + x0x1 + x2x3 + x2 + x1 + 1

y1 = x0x1x2 + x0x1x3 + x1x2x3 + x0x3 + x1 + 1

y2 = x0x1x2 + x0x1x3 + x0x2x3 + x0x2 + x1x3 + x2x3 + x2 + x3 + 1

y3 = x0x1x2 + x0x1x3 + x0x1 + x2x3 + x1x2 + x0 + x1 + x3,

where xi are the input variables and yi are the output variables of the inverse S-box.
As previously mentioned, for each variable that can be assigned from F24 resp. F28 in the “old”

fault equation we introduce 4 resp. 8 new variables that encode the bits of the word. We start
rewriting the innermost expression (usually of the type xi ⊕ ki), then the inverse S-box and finally
the outer XOR that connects the inverse S-boxes. The left-hand side of the equations is trivial (i.e.
only field multiplication). At the end, we have to simplify the expressions, because we work in the
Boolean ring (e.g. xi + xi = 0 holds here).

In the similar manner, we can rewrite whole small scale AES cipher into the polynomial form.

5 Propositional Representations

Similar to the transformation discussed in the previous section, we converted the hardware imple-
mentation as into propositional formulas in conjunctive normal form (CNF). This can be achieved



efficiently through the Tseitin transformation [8]. In addition, we also converted the algebraic
representation into formulas in CNF. This yields two formulas for each small scale AES variant.

By assigning the variables corresponding to the input and key and solving the formula, the
variables representing the outputs will take on encrypted or decrypted value.

Solving such formulas is the well known SAT problem, for which many highly optimized
algorithms exist, e.g. [9,10].

Even though the formulas in Sections 4 and 5 have different origins they both represent the
exact same problem. However, due to the very different original encodings (circuit and polynomial)
combining these two versions might yield additional insights or help the solver by providing
additional structural information.

6 Conclusion

In this paper we presented the first hardware implementation of the small scale AES cipher which is
used for cryptographic research. The implementation is available in VHDL as well as on gate level
and performs the encryption and decryption for a variable number of rounds and all the different
variants of the cipher.

In addition, we also provide fault attack equations which can be used to calculate the secret key
if a fault is injected into the operations. Depending on the small scale variant, this can be achieved
with only one or two fault injections.

Finally, we converted the cipher description into algebraic and propositional formulas. Solving
these formulas is similar to performing the calculation steps in the description of the AES algorithm
or setting the inputs of the circuits to the corresponding values. In all cases the en- or decryption
is performed and the result will always be the same.

Having all these resources available in a single and well structured package allows researchers to
combine the different sources of information which might reveal new patterns or solving strategies.
Additionally, the fine granularity of difficulty between the different small scale AES versions allows
for the assessment of new attacks or the comparison of different attacks.

All files discussed here are available at: http://afa.fim.uni-passau.de/en/benchmarks/

Acknowledgements

This work was partially supported by the DFG project “Algebraic Fault Attacks” (PO 1220/7-1,
BE 1176 20/1, KR 1907/6-1) and by the COST Action TRUDEVICE.

References
1. National Institute of Standards, Technology (NIST): Advanced Encryption Standard (FIPS PUB 197)

(2001)
2. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the aes. Fast Software Encryption: 12th

International Workshop (2005) 145–162
3. Stein, W., Joyner, D.: SAGE: System for Algebra and Geometry Experimentation. ACM SIGSAM

Bulletin 39(2) (2005) 61–64. Available at http://www.sagemath.org
4. The ApCoCoA Team: ApCoCoA: Approximate Computations in Commutative Algebra. (Available at

http://www.apcocoa.org)
5. Si2: NanGate FreePDK45 generic open cell library, v1.3. (http://www.si2.org/openeda.si2.org/

projects/nangatelib)
6. Tunstall, M., Mukhopadhyay, D., Ali, S. In: Differential Fault Analysis of the Advanced Encryption

Standard Using a Single Fault. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 224–233
7. Kreuzer, M., Robbiano, L.: Computational commutative algebra 2. Springer Berlin (2005)
8. Tseitin, G.: On the Complexity of Derivation in Propositional Calculus. Studies in Constructive

Mathematics and Mathematical Logic (1968)
9. Schubert, T., Reimer, S.: antom. In: https://projects.informatik.uni-freiburg.de/projects/

antom. (2016)
10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: SAT

2005: 8th International Conference on Theory and Applications of Satisfiability Testing. SAT’05, Berlin,
Heidelberg, Springer-Verlag (2005) 61–75

http://afa.fim.uni-passau.de/en/benchmarks/
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib
https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom

	Small Scale AES Toolbox: Algebraic and Propositional Formulas, Circuit-Implementations and Fault Equations

