36 research outputs found

    Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family

    Get PDF
    Background: Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results: Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions: Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution

    The Genome Sequence of "Candidatus Fokinia solitaria": Insights on Reductive Evolution in Rickettsiales

    Get PDF
    "Candidatus Fokinia solitaria" is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the "Candidatus Midichloriaceae" family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family "Candidatus Midichloriaceae") or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; "Candidatus Fokinia solitaria" could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity

    Rediscovering the genus Lyticum, multiflagellated symbionts of the order Rickettsiales

    Get PDF
    Among the bacterial symbionts harbored by the model organism Paramecium, many still lack a recent investigation that includes a molecular characterization. The genus Lyticum consists of two species of large-sized bacteria displaying numerous flagella, despite their inability to move inside their hosts’ cytoplasm. We present a multidisciplinary redescription of both species, using the deposited type strains as well as newly collected material. On the basis of 16S rRNA gene sequences, we assigned Lyticum to the order Rickettsiales, that is intensely studied because of its pathogenic representatives and its position as the extant group most closely related to the mitochondrial ancestor. We provide conclusive proofs that at least some Rickettsiales possess actual flagella, a feature that has been recently predicted from genomic data but never confirmed. We give support to the hypothesis that the mitochondrial ancestor could have been flagellated, and provide the basis for further studies on these ciliate endosymbionts

    "Candidatus Fokinia solitaria", a novel "stand-Alone" symbiotic lineage of Midichloriaceae (Rickettsiales)

    Get PDF
    Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 × 0.25-0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-Alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages. Copyright

    Coping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum

    Get PDF
    Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change

    New Paramecium (Ciliophora, Oligohymenophorea) congeners shape our view on its biodiversity

    No full text
    Paramecium is one of the best known and most intensely studied ciliate genera. It currently comprises 18 morphospecies including the P. aurelia complex of 15 sibling species. Here, we describe the new morphospecies Paramecium buetschlii sp. nov. from a freshwater pool in Norway, featuring unusual combinations of morphological characters and a high genetic diversity relative to other congeners. Three further investigated Paramecium spp. from Germany, Hungary, and Brazil are treated as cryptic species, because they are difficult to discriminate from other members of the genus relying on morphological criteria only. However, DNA-based taxonomic markers (18S-rDNA and mitochondrial COI) clearly indicate they are separate species. Due to the lack of an appropriate systematic term within the International Code of Zoological Nomenclature for distinguishing cryptic from valid biological species, we propose the provisional status Eucandidatus as a component of the taxonomic name when describing new but cryptic eukaryotes. Based on our data, we postulate that even within Europe there is a higher biodiversity within this common ciliate group that is heavily used in the classroom. By uncovering potentially distinct species that have been classified under the same species names, our molecular analyses further suggest a higher current stock diversity in Paramecium than previously thought. We also would like to emphasize that under-sampling is another major issue in estimating protist diversity. Future large-scale studies based on extensive sampling not only in exotic and remote regions, but also in less frequently sampled areas, will therefore likely improve our understanding of species richness and diversity

    Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms

    No full text
    International audienceEvolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche
    corecore