417 research outputs found
The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity
Some key results obtained in joint research projects with Alex M\"uller are
summarized, concentrating on the invention of the barocaloric effect and its
application for cooling as well as on important findings in the field of
high-temperature superconductivity resulting from neutron scattering
experiments.Comment: 26 pages, 9 figure
Health-Related Quality of Life is Linked to the Gut Microbiome in Kidney Transplant Recipients
Kidney transplant recipients (KTR) have impaired health-related quality of life (HRQoL) and suffer from intestinal dysbiosis. Increasing evidence shows that gut health and HRQoL are tightly related in the general population. We investigated the association between the gut microbiome and HRQoL in KTR, using metagenomic sequencing data from fecal samples collected from 507 KTR. Multiple bacterial species were associated with lower HRQoL, many of which have previously been associated with adverse health conditions. Gut microbiome dissimilarity to the general population was highest among KTR with an impaired physical HRQoL (R=-0.20, P=2.3x10-5) and mental HRQoL (R=-0.14, P=1.3x10-3). Physical and mental HRQoL explained a significant part of the variance in the gut microbiome (R2=0.63%, FDR=5.40x10-4 and R2=0.37%, FDR=1.40x10-3, respectively). Additionally, multiple metabolic and neuroactive pathways (gut brain modules) were associated with lower HRQoL. These results put forward the microbiome as a potential target to improve HRQoL in KTR
Male Microchimerism at High Levels in Peripheral Blood Mononuclear Cells from Women with End Stage Renal Disease before Kidney Transplantation
Patients with end stage renal diseases (ESRD) are generally tested for donor chimerism after kidney transplantation for tolerance mechanism purposes. But, to our knowledge, no data are available on natural and/or iatrogenic microchimerism (Mc), deriving from pregnancy and/or blood transfusion, acquired prior to transplantation. In this context, we tested the prevalence of male Mc using a real time PCR assay for DYS14, a Y-chromosome specific sequence, in peripheral blood mononuclear cells (PBMC) from 55 women with ESRD, prior to their first kidney transplantation, and compared them with results from 82 healthy women. Male Mc was also quantified in 5 native kidney biopsies obtained two to four years prior to blood testing and in PBMC from 8 women collected after female kidney transplantation, several years after the initial blood testing. Women with ESRD showed statistically higher frequencies (62%) and quantities (98 genome equivalent cells per million of host cells, gEq/M) of male Mc in their PBMC than healthy women (16% and 0.3 gEq/M, p<0.00001 and p = 0.0005 respectively). Male Mc was increased in women with ESRD whether they had or not a history of male pregnancy and/or of blood transfusion. Three out of five renal biopsies obtained a few years prior to the blood test also contained Mc, but no correlation could be established between earlier Mc in a kidney and later presence in PBMC. Finally, several years after female kidney transplantation, male Mc was totally cleared from PBMC in all women tested but one. This intriguing and striking initial result of natural and iatrogenic male Mc persistence in peripheral blood from women with ESRD raises several hypotheses for the possible role of these cells in renal diseases. Further studies are needed to elucidate mechanisms of recruitment and persistence of Mc in women with ESRD
Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases
Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current
The molecular dynamics of a quenched poly (ether ether ketone) (PEEK) was studied over a broad frequency range from 10-3 to 106 Hz by combining dynamic dielectric spectroscopy (DDS) and thermo-stimulated current (TSC) analysis. The dielectric relaxation losses e00 KK has been determined from the real part e0 T(x) thanks to Kramers–Kronig transform. In this way, conduction and relaxation processes can be analyzed independently. Two secondary dipolar relaxations, the c and the b modes, corresponding to non-cooperative localized molecular mobility have been pointed out. The main a relaxation appeared close to the glass transition temperature as determined by DSC; it has been attributed to the delocalized cooperative mobility of the free amorphous phase. The relaxation times of dielectric relaxations determined with TSC at low frequency converge with relaxation times extracted from DDS at high frequency. This correlation emphasized continuity of mobility kinetics between vitreous and liquid state. The dielectric spectroscopy exhibits the ac relaxation, near 443 K, which has been associated with the rigid amorphous phase confined by crystallites. This present experiment demonstrates coherence of the dynamics of the PEEK heterogeneous amorphous phase between glassy and liquid state and significantly improve the knowledge of molecular/dynamic structure relationships
Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy
Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures
Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers
Polyimide co-polymers have been prepared based on different diamines as co-monomers:
a diamine without CN groups and a novel synthesized diamine with two CN groups
prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric
spectroscopy measurements were performed and the dielectric complex function, ac
conductivity and electric modulus of the co-polymers were investigated as a function of
CN group content in the frequency range from 0.1 Hz to 107
Hz at temperatures from 25
to 260 °C.
For all samples and temperatures above 150ºC, the dielectric constant increases with
increasing temperature due to increaseing conductivity. The α-relaxation is just detected
for the sample without CN groups, being this relaxation overlapped by the electrical
conductivity contributions in the remaining samples. For the copolymer samples and the
polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected.
The mechanisms responsible for the dielectric relaxation, conduction process and electric
modulus response have been discussed as a function of the CN groups content present in
the samples.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PESTC/FIS/UI607/2011 and grants SFRH/BD/ 62507/2009 (A.C.L.) SFRH/BD/68499/2010 (C.M.C.). The authors also thank funding from “Matepro – Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). RSS acknowledge the support of the Spanish Ministry of Economy and Competitiveness through the project MAT2012-38359-C03-01 (including the FEDER financial support). Authors also thank the Basque Country Government for financial support (ACTIMAT project, ETORTEK Program, IE13-380, and Ayudas para Grupos de Investigación del Sistema Universitario Vasco Program, IT718-13)
Paneth Cells in Intestinal Homeostasis and Tissue Injury
Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5+ cells as frequently cycling stem cells, whereas Bmi1+, mTert+, Hopx+ and Lrig1+ cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5+ stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation
Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis
BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB
- …