259 research outputs found
Dizajn, razvoj i vrednovanje novih nanoemulzija za transdermalnu primjenu celekoksiba
The aim of the present study was to investigate the potential of nanoemulsion formulations for transdermal delivery of celecoxib (CXB). The in vitro skin permeation profile of optimized formulations was compared with CXB gel and nanoemulsion gel. Significant increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement ratio (Er) was observed in nanoemulsion formulations T1 and T2 (p < 0.05). The highest value of these permeability parameters was obtained in formulation T2, which consisted of 2% m/m of CXB, 10% m/m of oil phase (Sefsol 218 and Triacetin), 50% m/m of surfactant mixture (Tween-80 and Transcutol-P) and 40% m/m of water. The anti-inflammatory effects of formulation T2 showed a significant increase (p < 0.05) in inhibition after 24 h compared to CXB gel and nanoemulsion gel on carrageenean-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of CXB.U radu su opisana ispitivanja nanoemulzija za transdermalnu primjenu celekoksiba (CXB). Profil permeacije kroz kožu ispitivan je in vitro i uspoređivan sa CXB gelom i nanoemulzijskim gelom. U formulacijama T1 i T2 postignuto je značajno povećanje ustaljenog fluksa (Jss), koeficijenta permeabilnosti (Kp) i povećanje omjera (Er) (p < 0.05). Najveće vrijednosti parametara permeabilnosti dobivene su u formulaciji T2 koja je sadržala 2% m/m CXB, 10% m/m uljne faze (Sefsol 218 i Triacetin), 50% m/m površinski-aktivnih tvari (Tween-80 i Transcutol-P) i 40% m/m vode. Protuupalno djelovanje formulacije T2 na edem šape štakora uzrokovan karageninom značajno je povećano (p < 0.05) poslije 24 h u usporedbi sa CXB gelom i nanoemulzijskim gelom. Rezultati ukazuju na poboljšanu isporuku celekoksiba putem nanoemulzija
Pharmacokinetic-Pharmacodynamic Modelling of the Analgesic and Antihyperalgesic Effects of Morphine after Intravenous Infusion in Human Volunteers
Using a modelling approach, this study aimed to (i) examine whether the pharmacodynamics of the analgesic and antihyperalgesic effects of morphine differ; (ii) investigate the influence of demographic, pain sensitivity and genetic (OPRM1) variables on between-subject variability of morphine pharmacokinetics and pharmacodynamics in human experimental pain models. The study was a randomized, double-blind, 5-arm, cross-over, placebo-controlled study. The psychophysical cutaneous pain tests, electrical pain tolerance (EPTo) and secondary hyperalgesia areas (2HA) were studied in 28 healthy individuals (15 males). The subjects were chosen based on a previous trial where 100 subjects rated (VAS) their pain during a heat injury (47°C, 7 min., 12.5 cm²). The 33% lowest- and highest pain-sensitive subjects were offered participation in the present study. A two-compartment linear model with allometric scaling for weight provided the best description of the plasma concentration-time profile of morphine. Changes in the EPTo and 2HA responses with time during the placebo treatment were best described by a linear model and a quadratic model, respectively. The model discrimination process showed clear evidence for adding between-occasion variability (BOV) on baseline and the placebo slope for EPTo and 2HA, respectively. The sensitivity covariate was significant on baseline EPTo values and genetics as a covariate on the placebo slope for 2HA. The analgesic and antihyperalgesic effects of morphine were pharmacologically distinct as the models had different effect site equilibration half-lives and different covariate effects. Morphine had negligible effect on 2HA, but significant effect on EPTo.Pernille Ravn, David J.R. Foster, Mads Kreilgaard, Lona Christrup, Mads U. Werner, Erik L. Secher, Ulrik Skram and Richard Upto
Control of Transdermal Permeation of Hydrocortisone Acetate from Hydrophilic and Lipophilic Formulations
The purpose of this research was the preparation of four formulations containing hydrocortisone acetate (HCA) for topical application, including two aqueous systems (hydrophilic microemulsion and aqueous gel) and two systems with dominant hydrophobicity (hydrophobic microemulsion and ointment). The formulations were tested for the release and permeation of HCA across an animal membrane. The release of HCA was found comparable for the four systems. The two microemulsions promote permeation across an ex-vivo membrane, examined by means of a Franz cell. Hydrophobic microemulsion guarantees the highest solubility (2,370 μg/ml) and flux (133 μg/cm2.h) of the drug, since it contains almost 40% Transcutol, a permeation enhancer. Gel and ointment provide lower solubility and flux, being the values, related to the ointment, the lowest ones (562 μg/ml and 0.4 μg/cm2.h). Experimental results allow the conclusion that gel and ointment can be suitable when it is desirable to minimize absorption of topically applied HCA as to keep the drug restricted to the diseased area and prevent side effects of the systemic presence of HCA
FDA Critical Path Initiatives: Opportunities for Generic Drug Development
FDA’s critical path initiative documents have focused on the challenges involved in the development of new drugs. Some of the focus areas identified apply equally to the production of generic drugs. However, there are scientific challenges unique to the development of generic drugs as well. In May 2007, FDA released a document “Critical Path Opportunities for Generic Drugs” that identified some of the specific challenges in the development of generic drugs. The key steps in generic product development are usually characterization of the reference product, design of a pharmaceutically equivalent and bioequivalent product, design of a consistent manufacturing process and conduct of the pivotal bioequivalence study. There are several areas of opportunity where scientific progress could accelerate the development and approval of generic products and expand the range of products for which generic versions are available, while maintaining high standards for quality, safety, and efficacy. These areas include the use of quality by design to develop bioequivalent products, more efficient bioequivalence methods for systemically acting drugs (expansion of BCS waivers, highly variable drugs), and development of new bioequivalence methods for locally acting drugs
Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids
Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions
Microneedles: A New Frontier in Nanomedicine Delivery
This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN
In Vivo Methods for the Assessment of Topical Drug Bioavailability
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described
- …