26 research outputs found

    Science Potential of a Deep Ocean Antineutrino Observatory

    Get PDF
    This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.Comment: 3 pages- paper presented at NOW 2006, Lecce, Ital

    Geo-neutrinos and Silicate Earth Enrichment of U and Th

    Full text link
    The terrestrial distribution of U, Th, and K abundances governs the thermal evolution, traces the differentiation, and reflects the bulk composition of the earth. Comparing the bulk earth composition to chondritic meteorites estimates the net amounts of these radiogenic heat-producing elements available for partitioning to the crust, mantle, and core. Core formation enriches the abundances of refractory lithophile elements, including U and Th, in the silicate earth by ~1.5. Global removal of volatile elements potentially increases this enrichment to ~2.8. The K content of the silicate earth follows from the ratio of K to U. Variable enrichment produces a range of possible heat-producing element abundances in the silicate earth. A model assesses the essentially fixed amounts of U, Th, and K in the approximately closed crust reservoir. Subtracting these sequestered crustal amounts from the variable amounts in the silicate earth results in a range of possible mantle allocations, leaving global dynamics and thermal evolution poorly constrained. Terrestrial antineutrinos from {\beta}-emitting daughter nuclei in the U and Th decay series traverse the earth with negligible attenuation. The rate at which large subsurface instruments observe these geo-neutrinos depends on the distribution of U and Th relative to the detector. Geo-neutrino observations with sensitivity to U and Th in the mantle are able to estimate silicate earth enrichment, leading to a more complete understanding of the origin, accretion, differentiation, and thermal history of the planet.Comment: published version: 21 pages, 3 figures, 5 table

    Solar Neutrinos and the Principle of Equivalence

    Get PDF
    We study the proposed solution of the solar neutrino problem which requires a flavor nondiagonal coupling of neutrinos to gravity. We adopt a phenomenological point of view and investigate the consequences of the hypothesis that the neutrino weak interaction eigenstates are linear combinations of the gravitational eigenstates which have slightly different couplings to gravity, f1Gf_1G and f2Gf_2G, f1f2<<1|f_1-f_2| << 1, corresponding to a difference in red-shift between electron and muon neutrinos, Δz/(1+z)f1f2\Delta z/(1+z) \sim |f_1 - f_2|. We perform a χ2\chi^2 analysis of the latest available solar neutrino data and obtain the allowed regions in the space of the relevant parameters. The existing data rule out most of the parameter space which can be probed in solar neutrino experiments, allowing only f1f23×1014|f_1 - f_2| \sim 3 \times 10^{-14} for small values of the mixing angle (2×103sin2(2θG)1022 \times 10^{-3} \le \sin^2(2\theta_G) \le 10^{-2}) and 1016<f1f2<101510^{-16} \stackrel{<}{\sim} |f_1 - f_2| \stackrel{<}{\sim}10^{-15} for large mixing (0.6sin2(2θG)0.90.6 \le \sin^2(2\theta_G) \le 0.9). Measurements of the 8B^8{\rm B}-neutrino energy spectrum in the SNO and Super-Kamiokande experiments will provide stronger constraints independent of all considerations related to solar models. We show that these measurements will be able to exclude part of the allowed region as well as to distinguish between conventional oscillations and oscillations due to the violation of the equivalence principle.Comment: 20 pages + 4 figures, IASSNS-AST 94/5

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    Testing the Vacuum Oscillation and the MSW Solutions of the Solar Neutrino Problem

    Full text link
    Solar model independent tests of the vacuum oscillation and MSW solutions of the solar neutrino problem are considered. Detailed predictions for time (seasonal) variations of the signals in the future solar neutrino detectors (SNO, Super Kamiokande, BOREXINO, HELLAZ), if solar neutrinos take part in vacuum oscillations, are given. Results on the distortions of the spectra of boron neutrinos, and of electrons from the neutrino-electron scattering induced by boron neutrinos, in the cases of vacuum oscillations or MSW transitions are presented for a large number of values of the relevant parameters. The possibilities to distinguish between the vacuum oscillation, the MSW adiabatic, and the MSW nonadiabatic transitions (solutions) in the future solar neutrino experiments are discussed.Comment: 26 p + 7 figures (available upon request from [email protected]), SISSA 41/94/EP and IFP-295-UN

    Neutrino mass spectrum from the results of neutrino oscillation experiments

    Get PDF
    All the possible schemes of neutrino mixing with four massive neutrinos inspired by the existing experimental indications in favor of neutrino mixing are considered in a model independent way. Assuming that in short-baseline experiments only one mass-squared difference is relevant, it is shown that the scheme with a neutrino mass hierarchy is not compatible with the experimental results. Only two schemes with two pairs of neutrinos with close masses separated by a mass difference of the order of 1 eV are in agreement with the results of all experiments. One of these schemes leads to possibly observable effects in Tritium and neutrinoless double-beta decay experiments.Comment: Latex2e file, 13 pages including 2 figures. Postscript also available at http://www.to.infn.it/teorici/giunti/papers.htm

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles
    corecore