1,420 research outputs found

    Leading SU(3)-breaking corrections to the baryon magnetic moments in Chiral Perturbation Theory

    Get PDF
    We calculate the baryon magnetic moments using covariant Chiral Perturbation Theory (χ\chiPT) within the Extended-on-mass-shell (EOMS) renormalization scheme. By fitting the two available low-energy constants (LECs), we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using Heavy Baryon (HB) χ\chiPT and covariant Infrared (IR) χ\chiPT. We also analyze the source of this improvement with particular attention on the comparison between the covariant results.Comment: 4 pages, 2 figures, accepted for publication in PR

    Becoming the Synthi-Fou: Stockhausen and the new keyboardism

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Karlheinz Stockhausen embraced the potential of electronic music to generate new timbres and acoustic typologies early in his career. After first experimenting with magnetic tape in works such as Gesang der Jünglinge (1955) and Kontakte (1958–60), he later embraced other synthesis technologies for the production of large-scale spatial electro-acoustic works such as Sirius (1970) and Oktophonie (1990–91). His interest in technological advances in sound design and sound diffusion also managed to penetrate his highly evolved Klavierstücke

    High-speed Civil Transport Aircraft Emissions

    Get PDF
    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance

    Supine vs. Prone Position With Turn of the Head Does Not Affect Cerebral Perfusion and Oxygenation in Stable Preterm Infants ≤32 Weeks Gestational Age

    Get PDF
    Intraventricular hemorrhage (IVH) is a frequent major damage to the brain of premature babies ≤32 weeks gestational age, and its incidence (20–25%) has not significantly changed lately. Because of the intrinsic fragility of germinal matrix blood vessels, IVH occurs following disruption of subependymal mono-layer arteries and is generally attributed to ischemia-reperfusion alterations or venous congestion, which may be caused by turn of the head. Therefore, supine position with the head in a midline position is considered a standard position for preterm infants during their first days of life. We asked whether a change in body position (supine vs. prone) linked with a turn of the head by 90° in the prone position would change blood flow velocities and resistance indices in major cerebral arteries and veins of stable premature babies at two different time points (t0, day of life 2, vs. t1, day 9). Moreover, we assessed cerebral tissue oxygenation (cStO2) by near-infrared spectroscopy and determined correlations for changes in velocities and oxygenation. Twenty one premature infants [gestational age 30 (26–32) weeks] with sufficiently stable gas exchange and circulation were screened by ultrasonography and near-infrared spectroscopy. Peak systolic and end-diastolic blood flow velocities in the anterior cerebral arteries (29 ± 6 m/s vs. 28 ± 7 peak flow at t0, 36 ± 8 vs. 35 ± 7 at t1), the basilar artery, the right and the left internal carotid artery, and the great cerebral vein Galen (4.0 ± 0.8 m/s vs. 4.1 ± 1.0 maximum flow at t0, 4.4 ± 0.8 vs. 4.4 ± 1.0 at t1) did not show significant differences following change of body and head position. Also, there were no differences in cStO2 (83 ± 7% vs. 84 ± 7 at t0, 76 ± 10 vs. 77 ± 11 at t1) and in vital signs such as heart rate and blood pressure. We conclude that change in body position with turn of the head in the prone position does not elicit significant alterations in cerebral blood flow velocities or in oxygenation of cerebral tissues. Maturational changes in arterial flow velocities and cStO2 are not correlated. For this subgroup of premature infants at low risk of IVH our data do not support the concept of exclusive preterm infant care in supine position

    Интенсификация возделывания картофеля

    Get PDF
    В статье описаны требования к качеству посадочного материала. Проведен анализ существующих технологий посадки картофеля. Предложена модернизированная конструкция посадочной машины и соответственно усовершенствованная технология посадки картофеля.The article describes the requirements for the quality of planting material. The analysis of existing potato planting technologies is carried out. A modernized planting machine design and, correspondingly, an improved technology for planting potatoes are proposed

    PICU mortality of children with cancer admitted to pediatric intensive care unit : a systematic review and meta-analysis

    Get PDF
    Background: Outcomes for children diagnosed with cancer have improved dramatically over the past 20 years. However, although 40% of pediatric cancer patients require at least one intensive care admission throughout their disease course, PICU outcomes and resource utilization by this population have not been rigorously studied in this specific group. Methods: Using a systematic strategy, we searched Medline, Embase, and CINAHL databases for articles describing PICU mortality of pediatric cancer patients admitted to PICU. Two investigators independently applied eligibility criteria, assessed data quality, and extracted data. We pooled PICU mortality estimates using random-effects models and examined mortality trends over time using meta-regression models. Results: Out of 1218 identified manuscripts, 31 studies were included covering 16,853 PICU admissions with the majority being retrospective in nature. Overall pooled weighted mortality was 27.8% (95% confidence interval (CI), 23.7-31.9%). Mortality decreased slightly over time when post-operative patients were excluded. The use of mechanical ventilation (odds ratio (OR): 18.49 [95% CI 13.79-24.78], p < 0.001), inotropic support (OR: 14.05 [95% CI 9.16-21.57], p < 0.001), or continuous renal replacement therapy (OR: 3.24 [95% CI 1.31-8.04], p = 0.01) was significantly associated with PICU mortality. Conclusions: PICU mortality rates of pediatric cancer patients are far higher when compared to current mortality rates of the general PICU population. PICU mortality has remained relatively unchanged over the past decades, a slight decrease was only seen when post-operative patients were excluded. This compared infavorably with the improved mortality seen in adults with cancer admitted to ICU, where research-led improvements have led to the paradigm of unlimited, aggressive ICU management without any limitations on resuscitations status, for a time-limited trial

    Positron Annihilation in the Galaxy

    Get PDF
    The 511 keV line from positron annihilation in the Galaxy was the first γ-ray line detected to originate from outside our solar system. Going into the fifth decade since the discovery, the source of positrons is still unconfirmed and remains one of the enduring mysteries in γ-ray astronomy. With a large flux of ∼10−3 γ/cm2/s, after 15 years in operation INTEGRAL/SPI has detected the 511 keV line at >50σ and has performed high-resolution spectral studies which conclude that Galactic positrons predominantly annihilate at low energies in warm phases of the interstellar medium. The results from imaging are less certain, but show a spatial distribution with a strong concentration in the center of the Galaxy. The observed emission from the Galactic disk has low surface brightness and the scale height is poorly constrained, therefore, the shear number of annihilating positrons in our Galaxy is still not well know. Positrons produced in β+-decay of nucleosynthesis products, such as 26Al, can account for some of the annihilation emission in the disk, but the observed spatial distribution, in particular the excess in the Galactic bulge, remains difficult to explain. Additionally, one of the largest uncertainties in these studies is the unknown distance that positrons propagate before annihilation. In this paper, we will summarize the current knowledge base of Galactic positrons, and discuss how next-generation instruments could finally provide the answers.Non peer reviewedFinal Accepted Versio
    corecore