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Leading SU(3)-breaking corrections to the baryon magnetic moments
in Chiral Perturbation Theory

L. S. Geng1, J. Martin Camalich1, L. Alvarez-Ruso1,2, and M. J. Vicente Vacas1

1Departamento de Fı́sica Teórica and IFIC, Centro Mixto,
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We calculate the baryon magnetic moments using covariant Chiral Perturbation Theory (χPT) within the
Extended-on-mass-shell (EOMS) renormalization scheme. By fitting the two available low-energy constants
(LECs), we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking
effects coming from the lowest-order loops. This success isin dramatic contrast with previous attempts at the
same order using Heavy Baryon (HB)χPT and covariant Infrared (IR)χPT. We also analyze the source of this
improvement with particular attention on the comparison between the covariant results.
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In the limit that SU(3) is an exact flavour symmetry it is
possible to relate the magnetic moments of the baryon-octet
and theΛΣ0 transition to those of the proton and the neutron.
These are the celebrated Coleman-Glashow formulas [1]. The
improvement of this description requires the inclusion of are-
alistic SU(3)-breaking mechanism. Chiral Perturbation The-
ory (χPT), as the realization of non-perturbative QCD at low-
energies [2, 3, 4], should be an appropriate framework to
tackle this problem in a systematic fashion. However, it was
soon noticed that the leading-order chiral corrections arelarge
and tend to worsen the results [5, 6]. This problem has often
been used to question the validity of SU(3)-χPT in the baryon
sector.

In the last decade several calculations in HBχPT up to next-
to-next-to-leading order (NNLO) have been performed both
with [6, 7, 8] and without [9] the inclusion of the baryon
decuplet. The large number of LECs appearing at this or-
der reduces the predictive power of the theory. Besides that,
it is also known that there are substantial relativistic correc-
tions [10].

The development of covariantχPT has been troubled by
the complications in the power counting introduced by the
baryon mass as a new large scale [3]. Different ways of solv-
ing this problem, such as the IR [11] and, more recently, the
EOMS [12] renormalization schemes, have been explored. In
SU(3) BχPT only the self-energies have been studied with
both schemes [13, 14]. The baryon-octet magnetic moments
have been calculated using the IR method [15] and, at NLO,
the SU(3)-breaking corrections are still large. Moreover,the
agreement with the data is even worse than in HBχPT. The
size of NLO terms raises the question about the convergence
of the chiral series [7, 9, 16].

In this letter we present a covariant calculation of the
baryon-octet magnetic moments atO(p3) (NLO) using the
EOMS renormalization technique. In contrast to the previous
works, we find small loop-corrections leading to a consider-
able improvement over the SU(3)-symmetric description. We
also show the results in HB and covariant IRχPT, and inves-
tigate the origin of the differences.

In χPT, the power counting (PC) provides a systematic or-
ganization of amplitudes as a perturbative expansion in pow-

ers of(p/ΛχSB)nχP T , wherep is a small momentum or scale
andΛχSB, the chiral symmetry breaking scale. In the one-
baryon sector, the chiral order of a properly renormalized
diagram withL loops, NM (NB) meson (baryon) propaga-
tors, andVk vertices fromkth-order Lagrangians, isnχPT =
4L − 2NM − NB +

∑

k kVk. In the covariant theory with
the MS renormalization prescription this rule is violated by
lower-order analytical pieces [12, 17].

Different renormalization methods leading to a consistent
PC have been developed within dimensional [11, 12] and cut-
off [18] regularization schemes. In the following we focus on
the former ones. In particular, the IR scheme [11] keeps the
so-called infrared part of the loop function, which fulfillsthe
PC and contains the non-analytic structures of the full func-
tion. The remaining so-called regular part, can be expanded
close to the chiral limit in a series of analytic terms includ-
ing the PC breaking pieces. They are then absorbed into the
LECs of the most general (and infinite) Chiral Lagrangian.
However, the IR formulation is known to introduce unphysi-
cal cuts at large momentum or meson masses [11, 19]. On the
other hand, in the EOMS scheme [12] one subtracts from the
full relativistic function just the PC breaking terms, absorbing
them into a finite set of available lower-order LECs.

Our calculation requires the use of the standard lowest-
order Chiral LagrangiansL(2)

φ and L
(1)
φB , describing the

pseudo-Goldstone bosons and baryons coupled to an exter-
nal electromagnetic source (e.g. [4]). At second order there
are two terms in the Chiral Lagrangian that contribute to the
magnetic moments of the octet baryons

L
(2)
γB =

bD
6

8MB

〈B̄σµν{F+
µν , B}〉 +

bF
6

8MB

〈B̄σµν [F+
µν , B]〉,

(1)
where, in our case,F+

µν = 2|e|QFµν , andFµν = ∂µAν −

∂νAµ is the electromagnetic strength tensor. The LECsbD
6

andbF
6 encode information about short-distance physics and

should be determined from experiment within a given renor-
malization scheme. We take the valuesD = 0.80 andF =
0.46 for the axial and vector meson-baryon couplings appear-
ing in L

(1)
φB and use the physical masses of the pseudoscalar

mesonsmπ ≡ mπ± = 139.57 MeV, mK ≡ mK± = 493.68
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TABLE I: Coefficients of the tree-level [Eq. (2)] and loop contributions [Eq. (3)] to the magnetic moments of the octet baryons.

p n Λ Σ− Σ+ Σ0 Ξ− Ξ0 ΛΣ0

αB
1
3

−
2
3

−
1
3

1
3

1
3

1
3

1
3

−
2
3

1
√

3

βB 1 0 0 -1 1 0 -1 0 0

ξ
(b)
Bπ −(D + F )2 (D + F )2 0 2

3
(D2 + 3F 2) −

2
3
(D2 + 3F 2) 0 (D − F )2 −(D − F )2 −

4
√

3
DF

ξ
(b)
BK −

2
3
(D2 + 3F 2) −(D − F )2 2DF (D − F )2 −(D + F )2 −2DF 2

3
(D2 + 3F 2) (D + F )2 −

2
√

3
DF

ξ
(c)
Bπ −

1
2
(D + F )2 −(D + F )2 0 2F 2

−2F 2 0 1
2
(D − F )2 (D − F )2 4

√

3
DF

ξ
(c)
BK −(D − F )2 (D − F )2 −2DF (D + F )2 −(D − F )2 2DF (D + F )2 −(D + F )2 2

√

3
DF

ξ
(c)
Bη −

1
6
(D − 3F )2 0 0 2

3
D2

−
2
3
D2 0 1

6
(D + 3F )2 0 0
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FIG. 1: Feynman diagrams contributing to the baryon anomalous
magnetic moment. The solid lines correspond to baryons, dashed
lines to mesons and the wiggly line denotes the external photon field.
Black and white dots indicateO(p) andO(p2) couplings respec-
tively.

MeV andmη = 547.5 MeV. For the baryon mass we take
a value ofMB = 940 MeV, so that the magnetic moments
come expressed directly in nuclear magnetons. A moderate
variation of MB is investigated below. As for the meson-
decay constant in the chiral limitF0, we choose an average
between the physical valuesFπ=92.4 MeV,FK=1.22Fπ and
Fη=1.3Fπ. Namely,F0 ≡ Fφ=1.17Fπ. The leading SU(3)-
breaking corrections to the mass of the baryons in the octet
and to the meson-decay constants contributes to the magnetic
moments at higher orders.

The Feynman diagrams for the anomalous magnetic mo-
ments up toO(p3) are shown in Fig. 1. The tree-level cou-
pling (a) is given by the Lagrangian (1), and carries the
leading-order (LO) result

κ
(2)
B = αBbD

6 + βBbF
6 , (2)

where the coefficientsαB andβB for each of the baryons in
the octet are listed in Table I. This lowest-order contribution
is nothing else but the SU(3)-symmetric prediction leadingto
the Coleman-Glashow relations [1, 6].

The O(p3) diagrams(b) and (c) account for the leading
SU(3)-breaking corrections that are induced by the corre-
sponding breaking in the masses of the pseudoscalar meson
octet. Their contributions to the anomalous magnetic moment

of a given member of the octetB can be written as

κ
(3)
B =

1

8π2F 2
φ





∑

M=π,K

ξ
(b)
BMH(b)(mM )

+
∑

M=π,K,η

ξ
(c)
BMH(c)(mM )



 (3)

with the coefficientsξ(b,c)
BM listed in Table I. The loop-

functions read

H(b)(m) = −M2
B + 2m2 +

m2

M2
B

(2M2
B − m2) log

(

m2

M2
B

)

+
2m

(

m4 − 4m2M2
B + 2M4

B

)

M2
B

√

4M2
B − m2

arccos

(

m

2 MB

)

,

H(c)(m) = M2
B + 2m2 +

m2

M2
B

(M2
B − m2) log

(

m2

M2
B

)

+
2m3

(

m2 − 3M2
B

)

M2
B

√

4M2
B − m2

arccos

(

m

2 MB

)

. (4)

These loop integrals are convergent and do not depend on a
renormalization scale. For the case of the proton and neu-
tron this result coincides with the one obtained using a lin-
earized form of the Gerasimov-Drell-Hearn sum rule [20].
One also notices that they contain pieces∼ M2

B that con-
tribute atO(p2) to the magnetic moments, breaking the PC.

In order to get rid of the PC problems we follow the EOMS
scheme, by which these pieces are absorbed into the available
counter-terms,bD

6 and bF
6 . This is equivalent to redefining

these two LECs as

b̃D
6 = bD

6 +
3DFM2

B

2π2F 2
φ

, b̃F
6 = bF

6 ,

so that

H̃(b) = H(b) + M2
B, H̃(c) = H(c) − M2

B. (5)

In this way, we have obtained the leading one-loop relativistic
contribution to the magnetic moments starting fromO(p3).
Furthermore, one is able to recover the leading non-analytical
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TABLE II: Numerical results of the fits of̃bD
6 andb̃F

6 to the experimental values of baryon-octet magnetic moments up toO(p3) in different
χPT approaches. The experimental values with the corresponding errors are also displayed in the last row. All the values for the magnetic
moments are expressed in units of nuclear magnetons, whileb̃D

6 andb̃F
6 are dimensionless.

p n Λ Σ− Σ+ Σ0 Ξ− Ξ0 ΛΣ0 b̃D
6 b̃F

6 χ̃2

O(p2)

Tree level 2.56 -1.60 -0.80 -0.97 2.56 0.80 -1.60 -0.97 1.38 2.40 0.77 0.46

O(p3)

HB 3.01 -2.62 -0.42 -1.35 2.18 0.42 -0.70 -0.52 1.68 4.71 2.481.01

IR 2.08 -2.74 -0.64 -1.13 2.41 0.64 -1.17 -1.45 1.89 4.81 0.012 1.86

EOMS 2.58 -2.10 -0.66 -1.10 2.43 0.66 -0.95 -1.27 1.58 3.82 1.20 0.18

Exp. 2.793(0) -1.913(0) -0.613(4) -1.160(25) 2.458(10) — -0.651(3) -1.250(14) ± 1.61(8) —

quantum correction in the HB formalism by settingMB ∼
ΛχSB

H̃(b)(m) ≃ πmMB + O(p2), H̃(c)(m) ≃ O(p2). (6)

When added to the tree-level terms, this result completes the
O(p3) estimation of the baryon magnetic moments in the
HBχPT approach [6, 9].

The IR amplitudes have been calculated in Refs. [15].
They can be obtained subtracting from the full loop-functions
(4) the corresponding regular parts, which can be expressed
around the chiral limit as

R(b)(m) = −M2
B +

19m4

6M2
B

−
2m6

5M4
B

+ · · · ,

R(c)(m) = M2
B + 2m2 +

5m4

2M2
B

−
m6

2M4
B

+ · · · . (7)

On the other side, the regular parts have unphysical cuts at
m = 2MB. In short, in order to recover the PC, the IR for-
mulation alters the analytical structure of the full relativistic
theory [20] such that the applications of this scheme for large
meson masses (physical or unphysical) may become question-
able [19]. Nevertheless, since the differences between thefull
relativistic and IR results (or those obtained in any other con-
sistent scheme) are analytical in quark mass, they should be
reconciled with the adjustment of higher-order counter-terms.

In Table II we show the numerical results for the baryon
magnetic moments obtained by minimizingχ̃2 =

∑

(µth −

µexp)
2 as a function of̃bD

6 and b̃F
6 . TheΛΣ0 transition mo-

ment is not included in the fit but it is a prediction to be con-
fronted with the experimental value. Moreover, we compare
the tree-level result with theO(p3) loop results given by the
three differentχPT approaches discussed above, namely, the
semi-relativistic HB Eq. (6) and the covariant Eq. (4), within
the EOMS Eq. (5) or the IR Eq. (7) renormalization schemes
[21]. The experimental values of the magnetic moments are
also displayed for comparison.

The HB results show the longstanding problem of the poor
convergence ofχPT for the baryon magnetic moments. The
leading non-analytical correction to the SU(3)-symmetricpre-
diction amounts up to 80% of the leading contribution for
some of the baryons. In this approach, it is necessary to come

up toO(p4) to achieve reasonable convergence, although the
role of the loop contributions is not clear in a scenario where
one has the same number of parameters as of experimental
values to fit [7]. One expects that the covariant theory, withthe
proper higher-order chiral terms, should overcome the prob-
lem of convergence. However, the IR results are even worse
that those obtained in HB. In particular, the quantum correc-
tion to theΣ− magnetic moment is three times bigger than the
leading order one. The inclusion of NNLO is then required to
achieve a successful description [15].

The EOMS results presented in this work show an un-
precedented NLO improvement over the tree-level description
within dimensionally regularizedχPT. Indeed, thẽχ2 in this
approach is much better than those obtained with HB and IR.
Moreover, it is also better than the tree level SU(3)-symmetric
description . The convergence of the chiral expansion in our
case can be accessed by separating theO(p2) from theO(p3)
contributions for each magnetic moment (in units of nuclear
magnetons)

µp = 3.47 (1 − 0.257) , µn = −2.55 (1 − 0.175) ,

µΛ = −1.27 (1 − 0.482) , µΣ− = −0.93 (1 + 0.187) ,

µΣ+ = 3.47 (1 − 0.300) , µΣ0 = 1.27 (1 − 0.482) ,

µΞ− = −0.93 (1 + 0.025) , µΞ0 = −2.55 (1 − 0.501) ,

µΛΣ0 = 2.21 (1 − 0.284) .

In dramatic contrast with the HB [9] and IR results [15], we
find that the NLO term represents, at most, a half of the lead-
ing contribution. This is consistent with the expected maximal
correction of aboutmη/ΛχSB. Remarkably, we obtain a value
for µΛΣ0 very close to the experimental one assuming a posi-
tive sign.

In order to understand the differences between the three
χPT formulations, we study the evolution of the minimalχ̃2

as weswitch-onthe SU(3)-breaking effects, by introducing
the parameterx = mM/mM,phys (whereM = π, K, η) and
varying it between zero and one. As seen in Fig.2, the three
approaches coincide in the vicinity of the chiral limit. The
EOMS and IR results stay very close up tox ∼ 0.4. As
x increases further HB and IR description of data get worse
while, on the contrary, the EOMS result lies well below the
SU(3) symmetric one. Following the analysis of Ref. [20], we
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FIG. 2: (Color on-line) SU(3)-breaking evolution (see textfor de-
tails) of the minimalχ̃2 in theO(p3) χPT approaches under study.
We also show the shaded areas produced by the uncertainty inMB

when varying from 0.8 GeV to 1.1 GeV. This effect lies within the
line thickness in the EOMS case, while the HB is insensitive to it.

interpret the unrealistic IR behaviour as a manifestation of the
change of the analytical structure of the theory made in this
formulation. Certainly, this is due to the fact that in SU(3)-
χPT one has to deal withK andη mesons which have masses
larger than 350 MeV, the limit deemed acceptable for meson
masses in one-loop SU(2)-χPT calculations [19].

We have also studied the uncertainties of our results to
the particular value chosen forMB. The shaded areas in
the plot are produced by varyingMB in the interval of0.8

GeV≤ MB ≤1.1 GeV. While in HB the result is indepen-
dent of the value of this parameter and IR manifests a clear
sensitivity to it (the fit being worse for largerm/MB ratios),
the EOMS result presents an intriguing insensitivity toMB

(the shaded area lies within the thickness of the solid curve
in Fig.2). As pointed out in Ref. [20], this feature, as well as
the soft dependence on the SU(3)-breaking exhibited by the
EOMS curve, is due to subtle cancellations encoded into the
full relativistic results.

In summary, we have improved the SU(3)-symmetric de-
scription of the baryon-octet magnetic moments by includ-
ing the leading quantum effects provided by relativisticχPT
within the EOMS scheme. Besides the relativistic corrections,
analyticity has proved to be of fundamental importance. In-
deed, the effect of the unphysical cuts embedded into the IR
loops containingK- andη-mesons shows to be sizable. In ad-
dition to the first successful description of baryon-octet mag-
netic moments at NLO, this work contributes to clarify the
longstanding puzzle regarding the applicability of baryonχPT
in the SU(3)-flavor case. A careful study of different SU(3)-
flavor observables is required in order to establish to what ex-
tent the improved convergence of EOMS with respect to IR
found in this work is a general feature.
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