110 research outputs found
Application of a Tensor Interpolation Method on the Determination of Fiber Orientation Tensors From Computed Tomography Images
When investigating the mechanical behavior of fiber-reinforced polymers, fiber orientation plays a decisive role concerning anisotropy. Fiber orientation distributions are typically measured in the form of fiber orientation tensors. In order to measure orientation tensors, computed tomography scans and consecutive image processing methods have become one of the leading non-destructive testing methods. The conflict between scan resolution and sample size limits the volume that can be scanned. To obtain the fiber orientation behavior across an entire plate, a direct interpolation of orientation tensors computed from CT scans of smaller volumes at selected coordinates of the plate is implemented. Rather than a component-based interpolation, the authors chose a decomposition and reassembly method interpolating shape and orientation of the tensors separately. While this approach has been implemented and used for e.g. diffusion tensors in medical imaging, the authors consider the application to sparse but measured CT-based data to be a novelty
Towards a Macroscopic Modelling of the Complexity in Traffic Flow
We present a macroscopic traffic flow model that extends existing fluid-like
models by an additional term containing the second derivative of the safe
velocity. Two qualitatively different shapes of the safe velocity are explored:
a conventional Fermi-type function and a function exhibiting a plateau at
intermediate densities. The suggested model shows an extremely rich dynamical
behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.
Implementation and comparison of algebraic and machine learning based tensor interpolation methods applied to fiber orientation tensor fields obtained from CT images
Fiber orientation tensors (FOT) are used as a compact form of representing the mechanically important quantity of fiber orientation in fiber reinforced composites. While they can be obtained via image processing methods from micro computed tomography scans (CT), the specimen size needs to be sufficiently small for adequate resolution – especially in the case of carbon fibers. In order to avoid massive workload by scans and image evaluation when determining full-field FOT distributions for a plaque or a part, e.g., for comparison with process simulations, the possibilities of a direct interpolation of a few measured FOT at specific support points were opened in this paper. Hence, three different tensor interpolation methods were implemented and compared qualitatively with the help of visualization through tensor glyphs and quantitatively by calculating originally measured tensors at support points and evaluating the deviations. The methods compared in this work include two algebraic approaches, firstly, a Euclidean component averaging and secondly, a decomposition approach based on separate invariant and quaternion weighting, as well as an artificial intelligence (AI)-based method using an artificial neural network (ANN). While the decomposition method showed the best results visually, quantitatively the component averaging method and the neural network behaved better (that is for the type of quantitative error assessment used in this paper) with mean absolute errors of 0.105 and 0.114 when calculating previously measured tensors and comparing the components. With each method providing different advantages, the use for further application as well as necessary improvement is discussed. The authors would like to highlight the novelty of the methods being used with small and CT-based tensor datasets
The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna
Phormidium lacuna is a naturally competent, filamentous cyanobacterium that belongs to the order Oscillatoriales. The filaments are motile on agar and other surfaces and display rapid lateral movements in liquid culture. Furthermore, they exhibit a photophobotactic response, a phototactic response towards light that is projected vertically onto the area covered by the culture. However, the molecular mechanisms underlying these phenomena are unclear. We performed the first molecular studies on the motility of an Oscillatoriales member. We generated mutants in which a kanamycin resistance cassette (KanR) was integrated in the phytochrome gene cphA and in various genes of the type IV pilin apparatus. pilM, pilN, pilQ and pilT mutants were defective in gliding motility, lateral movements and photophobotaxis, indicating that type IV pili are involved in all three kinds of motility. pilB mutants were only partially blocked in terms of their responses. pilB is the proposed ATPase for expelling of the filament in type IV pili. The genome reveals proteins sharing weak pilB homology in the ATPase region, these might explain the incomplete phenotype. The cphA mutant revealed a significantly reduced photophobotactic response towards red light. Therefore, our results imply that CphA acts as one of several photophobotaxis photoreceptors or that it could modulate the photophobotaxis response
Interstellar polarization and grain alignment: the role of iron and silicon
We compiled the polarimetric data for a sample of lines of sight with known
abundances of Mg, Si, and Fe. We correlated the degree of interstellar
polarization and polarization efficiency (the ratio of to the colour
excess or extinction ) with dust phase abundances. We detect an
anticorrelation between and the dust phase abundance of iron in non
silicate - containing grains ]_\rm d, a correlation
between and the abundance of Si, and no correlation between or
and dust phase abundances. These findings can be explained if mainly
the silicate grains aligned by the radiative mechanism are responsible for the
observed interstellar linear polarization.Comment: Accepted for publication in Astronomy and Astrophysic
Extended X-ray emission in PKS 1718-649
© ESO 2018. PKS 1718-649 is one of the closest and most comprehensively studied candidates of a young active galactic nucleus (AGN) that is still embedded in its optical host galaxy. The compact radio structure, with a maximal extent of a few parsecs, makes it a member of the group of compact symmetric objects (CSO). Its environment imposes a turnover of the radio synchrotron spectrum towards lower frequencies, also classifying PKS 1718-649 as gigahertz-peaked radio spectrum (GPS) source. Its close proximity has allowed the first detection of extended X-ray emission in a GPS/CSO source with Chandra that is for the most part unrelated to nuclear feedback. However, not much is known about the nature of this emission. By co-adding all archival Chandra data and complementing these datasets with the large effective area of XMM-Newton, we are able to study the detailed physics of the environment of PKS 1718-649. Not only can we confirm that the bulk of the kiloparsec-scale environment emits in the soft X-rays, but we also identify the emitting gas to form a hot, collisionally ionized medium. While the feedback of the central AGN still seems to be constrained to the inner few parsecs, we argue that supernovae are capable of producing the observed large-scale X-ray emission at a rate inferred from its estimated star formation rate
Rolling ferrofluid drop on the surface of a liquid
We report on the controlled transport of drops of magnetic liquid, which are
swimming on top of a non-magnetic liquid layer. A magnetic field which is
rotating in a vertical plane creates a torque on the drop. Due to surface
stresses within the immiscible liquid beneath, the drop is propelled forward.
We measure the drop speed for different field amplitudes, field frequencies and
drop volumes. Simplifying theoretical models describe the drop either as a
solid sphere with a Navier slip boundary condition, or as a liquid half-sphere.
An analytical expression for the drop speed is obtained which is free of any
fitting parameters and is well in accordance with the experimental
measurements. Possible microfluidic applications of the rolling drop are also
discussed
- …