463 research outputs found
Static wormholes on the brane inspired by Kaluza-Klein gravity
We use static solutions of 5-dimensional Kaluza-Klein gravity to generate
several classes of static, spherically symmetric spacetimes which are analytic
solutions to the equation , where is the
four-dimensional Ricci scalar. In the Randall & Sundrum scenario they can be
interpreted as vacuum solutions on the brane. The solutions contain the
Schwarzschild black hole, and generate new families of traversable Lorenzian
wormholes as well as nakedly singular spacetimes. They generalize a number of
previously known solutions in the literature, e.g., the temporal and spatial
Schwarzschild solutions of braneworld theory as well as the class of self-dual
Lorenzian wormholes. A major departure of our solutions from Lorenzian
wormholes {\it a la} Morris and Thorne is that, for certain values of the
parameters of the solutions, they contain three spherical surfaces (instead of
one) which are extremal and have finite area. Two of them have the same size,
meet the "flare-out" requirements, and show the typical violation of the energy
conditions that characterizes a wormhole throat. The other extremal sphere is
"flaring-in" in the sense that its sectional area is a local maximum and the
weak, null and dominant energy conditions are satisfied in its neighborhood.
After bouncing back at this second surface a traveler crosses into another
space which is the double of the one she/he started in. Another interesting
feature is that the size of the throat can be less than the Schwarzschild
radius , which no longer defines the horizon, i.e., to a distant observer
a particle or light falling down crosses the Schwarzschild radius in a finite
time
Charge without charge, regular spherically symmetric solutions and the Einstein-Born-Infeld theory
The aim of this paper is to continue the research of JMP 46, 042501 (2005) of
regular static spherically symmetric spacetimes in Einstein-Born-Infeld
theories from the point of view of the spacetime geometry and the
electromagnetic structure. The energy conditions, geodesic completeness and the
main features of the horizons of this spacetime are explicitly shown. A new
static spherically symmetric dyonic solution in Einstein-Born-Infeld theory
with similar good properties as in the regular pure electric and magnetic cases
of our previous work, is presented and analyzed. Also, the circumvention of a
version of "no go" theorem claiming the non existence of regular electric black
holes and other electromagnetic static spherically configurations with regular
center is explained by dealing with a more general statement of the problem.Comment: Figures in Int J Theor Phys (Online First
Long-Range Correlations in Closed Shell Nuclei
The effects of correlations on the bulk properties of nuclei are investigated
in large model spaces including up to 21 single-particle orbits. The evaluation
of the single-particle Green function is made feasible by means of the BAGEL
approximation. The spectral function for single-nucleon pick-up and removal is
investigated for the nuclei and . Special attention is paid
to the effects produced by correlations on the calculated ground state
properties of closed shell nuclei. It is observed that correlations beyond the
Brueckner Hartree Fock approximation tend to improve the results obtained using
realistic nucleon nucleon interactions.Comment: 23 pages 4 figures not included, Report Tu-93-081
A note on second-order perturbations of non-canonical scalar fields
We study second-order perturbations for a general non-canonical scalar field,
minimally coupled to gravity, on the unperturbed FRW background, where metric
fluctuations are neglected a priori. By employing different approaches to
cosmological perturbation theory, we show that, even in this simplified set-up,
the second-order perturbations to the stress tensor, the energy density and the
pressure display potential instabilities, which are not present at linear
order. The conditions on the Lagrangian under which these instabilities take
place are provided. We also discuss briefly the significance of our analysis in
light of the possible linearization instability of these fields about the FRW
background.Comment: 8 page, Revtex 4. Clarifications added, results unchanged; [v3] 10
pages, matches with the published version, Discussion for specific cases
expanded and preliminary results including the metric perturbations discusse
Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes
High rates of error-prone replication result in the rapid accumulation of genetic diversity of RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fitness and that modest variations in replicase fidelity may be associated with viral attenuation. Arthropod-borne viruses (arboviruses) are unique in their requirement for host cycling and may necessitate substantial genetic and phenotypic plasticity. In order to more thoroughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus) utilizing selection in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent RNA polymerase associated with increased fidelity, V793I and G806R, and a single mutation in the WNV methyltransferase, T248I, associated with decreased fidelity. Both deep-sequencing and in vitro biochemical assays confirmed strain-specific differences in both fidelity and mutational bias. WNV fidelity variants demonstrated host-specific alterations to replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell culture. Experimental infections of colonized and field populations of Cx. quinquefaciatus demonstrated that WNV fidelity alterations are associated with a significantly impaired capacity to establish viable infections in mosquitoes. Taken together, these studies (i) demonstrate the importance of allosteric interactions in regulating mutation rates, (ii) establish that mutational spectra can be both sequence and strain-dependent, and (iii) display the profound phenotypic consequences associated with altered replication complex function of flaviviruses
Gauged motion in general relativity and in Kaluza-Klein theories
In a recent paper [1] a new generalization of the Killing motion, the {\it
gauged motion}, has been introduced for stationary spacetimes where it was
shown that the physical symmetries of such spacetimes are well described
through this new symmetry. In this article after a more detailed study in the
stationary case we present the definition of gauged motion for general
spacetimes. The definition is based on the gauged Lie derivative induced by a
threading family of observers and the relevant reparametrization invariance. We
also extend the gauged motion to the case of Kaluza-Klein theories.Comment: 42 pages, revised version, typos correction along with some minor
changes, Revtex forma
Energetics of the Einstein-Rosen spacetime
A study covering some aspects of the Einstein--Rosen metric is presented. The
electric and magnetic parts of the Weyl tensor are calculated. It is shown that
there are no purely magnetic E--R spacetimes, and also that a purely electric
E--R spacetime is necessarily static. The geodesics equations are found and
circular ones are analyzed in detail. The super--Poynting and the
``Lagrangian'' Poynting vectors are calculated and their expressions are found
for two specific examples. It is shown that for a pulse--type solution, both
expressions describe an inward radially directed flow of energy, far behind the
wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in
Int.J.Theor.Phy
Few-nucleon systems in translationally invariant harmonic oscillator basis
We present a translationally invariant formulation of the no-core shell model
approach for few-nucleon systems. We discuss a general method of
antisymmetrization of the harmonic-oscillator basis depending on Jacobi
coordinates. The use of a translationally invariant basis allows us to employ
larger model spaces than in traditional shell-model calculations. Moreover, in
addition to two-body effective interactions, three- or higher-body effective
interactions as well as real three-body interactions can be utilized. In the
present study we apply the formalism to solve three and four nucleon systems
interacting by the CD-Bonn nucleon-nucleon potential. Results of ground-state
as well as excited-state energies, rms radii and magnetic moments are
discussed. In addition, we compare charge form factor results obtained using
the CD-Bonn and Argonne V8' NN potentials.Comment: 25 pages. RevTex. 13 Postscript figure
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
- …