947 research outputs found

    Can exercise affect immune function to increase susceptibility to infection?

    Get PDF
    Multiple studies in humans and animals have demonstrated the profound impact that exercise can have on the immune system. There is a general consensus that regular bouts of short-lasting (i.e. up to 45 minutes) moderate intensity exercise is beneficial for host immune defense, particularly in older adults and people with chronic diseases. In contrast, infection burden is reported to be high among high performance athletes and second only to injury for the number of training days lost during preparation for major sporting events. This has shaped the common view that arduous exercise (i.e. those activities practiced by high performance athletes/ military personnel that greatly exceed recommended physical activity guidelines) can suppress immunity and increase infection risk. However, the idea that exercise per se can suppress immunity and increase infection risk independently of the many other factors (e.g. anxiety, sleep disruption, travel, exposure, nutritional deficits, environmental extremes, etc.) experienced by these populations has recently been challenged. The purpose of this debate article was to solicit opposing arguments centered around this fundamental question in the exercise immunology field: can exercise affect immune function to increase susceptibility to infection. Issues that were contested between the debating groups include: (i) whether or not athletes are more susceptible to infection (mainly of the upper respiratory tract) than the general population; (ii) whether exercise per se is capable of altering immunity to increase infection risk independently of the multiple factors that activate shared immune pathways and are unique to the study populations involved; (iii) the usefulness of certain biomarkers and the interpretation of in vitro and in vivo data to monitor immune health in those who perform arduous exercise; and (iv) the quality of scientific evidence that has been used to substantiate claims for and against the potential negative effects of arduous exercise on immunity and infection risk. A key point of agreement between the groups is that infection susceptibility has a multifactorial underpinning. An issue that remains to be resolved is whether exercise per se is a causative factor of increased infection risk in athletes. This article should provide impetus for more empirical research to unravel the complex questions that surround this contentious issue in the field of exercise immunology

    Attosecond physics at the nanoscale

    Get PDF
    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution

    Successful treatment for acute aortic dissection in pregnancy---bentall procedure concomitant with cesarean section

    Get PDF
    Acute aortic type A dissection is a life-threatening disease that requires immediate surgical intervention. When dissection occurs during pregnancy, it is of high risk for both the mother and the fetus. In this study, we reported two cases of acute aortic dissection in late pregnancy at 28 weeks and 32 weeks of gestation respectively. After the two patients underwent a cesarean section and delivered a baby, we performed composite graft replacement of the aortic valve, aortic root and ascending aorta, with re-implantation of the coronary arteries into the graft (Bentall procedure) instead of repairing the arch with deep hypothermia and circulation arrest. Both mothers and children survived and recovered well

    Justification of the symmetric damping model of the dynamical Casimir effect in a cavity with a semiconductor mirror

    Full text link
    A "microscopic" justification of the "symmetric damping" model of a quantum oscillator with time-dependent frequency and time-dependent damping is given. This model is used to predict results of experiments on simulating the dynamical Casimir effect in a cavity with a photo-excited semiconductor mirror. It is shown that the most general bilinear time-dependent coupling of a selected oscillator (field mode) to a bath of harmonic oscillators results in two equal friction coefficients for the both quadratures, provided all the coupling coefficients are proportional to a single arbitrary function of time whose duration is much shorter than the periods of all oscillators. The choice of coupling in the rotating wave approximation form leads to the "mimimum noise" model of the quantum damped oscillator, introduced earlier in a pure phenomenological way.Comment: 9 pages, typos corrected, corresponds to the published version, except for the reference styl

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Precision Measurement of the Mass of the h_c(1P1) State of Charmonium

    Full text link
    A precision measurement of the mass of the h_c(1P1) state of charmonium has been made using a sample of 24.5 million psi(2S) events produced in e+e- annihilation at CESR. The reaction used was psi(2S) -> pi0 h_c, pi0 -> gamma gamma, h_c -> gamma eta_c, and the reaction products were detected in the CLEO-c detector. Data have been analyzed both for the inclusive reaction and for the exclusive reactions in which eta_c decays are reconstructed in fifteen hadronic decay channels. Consistent results are obtained in the two analyses. The averaged results of the present measurements are M(h_c)=3525.28+-0.19 (stat)+-0.12(syst) MeV, and B(psi(2S) -> pi0 h_c)xB(h_c -> gamma eta_c)= (4.19+-0.32+-0.45)x10^-4. Using the 3PJ centroid mass, Delta M_hf(1P)= - M(h_c) = +0.02+-0.19+-0.13 MeV.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees

    Get PDF
    email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    J/psi and psi(2S) Radiative Transitions to eta_c

    Full text link
    Using 24.5 million psi(2S) decays collected with the CLEO-c detector at CESR we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(psi(2S)->gamma eta_c) = (4.32+/-0.16+/-0.60)x10^-3, B(J/psi->gamma eta_c)/B(psi(2S)->gamma eta_c) = 4.59+/-0.23+/-0.64, and B(J/psi->gamma eta_c) = (1.98+/-0.09+/-0.30)%. We observe a distortion in the eta_c line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the eta_c mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the eta_c mass in radiative transitions and other production mechanisms.Comment: 11 pages, 3 figure

    Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay

    Full text link
    Using a sample of tagged D_s decays collected near the D^*_s D_s peak production energy in e+e- collisions with the CLEO-c detector, we study the leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %, where the first error is statistical and the second systematic. Combining this result with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau (via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = (274 +- 10 +- 5) MeV.Comment: 9 pages, postscript also available through http://www.lns.cornell.edu/public/CLNS/2007/, revise
    corecore