82 research outputs found

    Stochastic Analysis of the SOS Response in Escherichia coli

    Get PDF
    BACKGROUND: DNA damage in Escherichia coli evokes a response mechanism called the SOS response. The genetic circuit of this mechanism includes the genes recA and lexA, which regulate each other via a mixed feedback loop involving transcriptional regulation and protein-protein interaction. Under normal conditions, recA is transcriptionally repressed by LexA, which also functions as an auto-repressor. In presence of DNA damage, RecA proteins recognize stalled replication forks and participate in the DNA repair process. Under these conditions, RecA marks LexA for fast degradation. Generally, such mixed feedback loops are known to exhibit either bi-stability or a single steady state. However, when the dynamics of the SOS system following DNA damage was recently studied in single cells, ordered peaks were observed in the promoter activity of both genes (Friedman et al., 2005, PLoS Biol. 3(7):e238). This surprising phenomenon was masked in previous studies of cell populations. Previous attempts to explain these results harnessed additional genes to the system and deployed complex deterministic mathematical models that were only partially successful in explaining the results. METHODOLOGY/PRINCIPAL FINDINGS: Here we apply stochastic methods, which are better suited for dynamic simulations of single cells. We show that a simple model, involving only the basic components of the circuit, is sufficient to explain the peaks in the promoter activities of recA and lexA. Notably, deterministic simulations of the same model do not produce peaks in the promoter activities. CONCLUSION/SIGNIFICANCE: We conclude that the double negative mixed feedback loop with auto-repression accounts for the experimentally observed peaks in the promoter activities. In addition to explaining the experimental results, this result shows that including additional regulations in a mixed feedback loop may dramatically change the dynamic functionality of this regulatory module. Furthermore, our results suggests that stochastic fluctuations strongly affect the qualitative behavior of important regulatory modules even under biologically relevant conditions, thus emphasizing the importance of stochastic analysis of regulatory circuits

    Medication errors in the Middle East countries: a systematic review of the literature

    Get PDF
    Background: Medication errors are a significant global concern and can cause serious medical consequences for patients. Little is known about medication errors in Middle Eastern countries. The objectives of this systematic review were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved. Methods: A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children. Results: Forty-five studies from 10 of the 15 Middle Eastern countries met the inclusion criteria. Nine (20%) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1% to 90.5% for prescribing and from 9.4% to 80% for administration. The most common types of prescribing errors reported were incorrect dose (with an incidence rate from 0.15% to 34.8% of prescriptions), wrong frequency and wrong strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor knowledge of medicines was identified as a contributory factor for errors by both doctors (prescribers) and nurses (when administering drugs). Most studies did not assess the clinical severity of the medication errors. Conclusion: Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality. Educational programmes on drug therapy for doctors and nurses are urgently needed

    Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm

    Get PDF
    A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo

    Systematic review of methods used in meta-analyses where a primary outcome is an adverse or unintended event

    Get PDF
    addresses: Peninsula College of Medicine and Dentistry, St Luke's Campus, University of Exeter, Exeter, UK. [email protected]: PMCID: PMC3528446types: Journal Article; Research Support, Non-U.S. Gov't© 2012 Warren et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Adverse consequences of medical interventions are a source of concern, but clinical trials may lack power to detect elevated rates of such events, while observational studies have inherent limitations. Meta-analysis allows the combination of individual studies, which can increase power and provide stronger evidence relating to adverse events. However, meta-analysis of adverse events has associated methodological challenges. The aim of this study was to systematically identify and review the methodology used in meta-analyses where a primary outcome is an adverse or unintended event, following a therapeutic intervention

    Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence.

    Get PDF
    PMC3497011EGFR is the best studied receptor tyrosine kinase. Yet, a comprehensive mechanistic understanding of EGFR signaling is lacking, despite very active research in the field. In this paper, we investigate the role of the juxtamembrane (JM) domain in EGFR signaling by replacing it with a (GGS)(10) unstructured sequence. We probe the effect of this replacement on (i) EGFR phosphorylation, (ii) EGFR dimerization and (iii) ligand (EGF) binding. We show that the replacement of EGFR JM domain with a (GGS)(10) unstructured linker completely abolishes the phosphorylation of all tyrosine residues, without measurable effects on receptor dimerization or ligand binding. Our results suggest that the JM domain does not stabilize the inactive EGFR dimer in the absence of ligand, and is likely critical only for the last step of EGFR activation, the ligand-induced transition from the inactive to active dimer.JH Libraries Open Access Fun

    Acta mathematica Universitatis Comenianae

    Get PDF
    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM-FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2-mRFP) and EGFR (EGFR-eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2-mRFP with EGFR-eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR-eGFP per cluster. In contrast, the pool of EGFR-eGFP without Grb2-mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR-eGFP and Grb2-mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit

    High-resolution (He-3,t) reaction on the double-beta decaying nucleus Xe-136

    No full text
    A (He-3, t) charge-exchange reaction experiment on the double-beta decaying nucleus Xe-136 has been performed at an incident energy of 420 MeV with the objective to measure the Gamow-Teller (GT) strength distribution in Cs-136. The measurements have been carried out at the dispersion-matched WS beam line and the Grand Raiden spectrometer of the Research Center for Nuclear Physics in Osaka, where an energy resolution of 42 keV was achieved. A new gas cell with thin windows made of polyethylene naphthalate has been employed as a target. The extracted GT strength distribution is confronted with the rather long 2 nu beta beta decay half-life of Xe-136.</p
    corecore