442 research outputs found

    Electrochemical Performance of Potassium Hydroxide and Ammonia Activated Porous Nitrogen-Doped Carbon in Sodium-Ion Batteries and Supercapacitors

    Get PDF
    Carbon nanomaterials possessing a high specific surface area, electrical conductivity and chemical stability are promising electrode materials for alkali metal-ion batteries and supercapacitors. In this work, we study nitrogen-doped carbon (NC) obtained by chemical vapor deposition of acetonitrile over the pyrolysis product of calcium tartrate, and activated with a potassium hydroxide melt followed by hydrothermal treatment in an aqueous ammonia solution. Such a two-stage chemical modification leads to an increase in the specific surface area up to 1180 m2 g−1, due to the formation of nanopores 0.6–1.5 nm in size. According to a spectroscopic study, the pore edges are decorated with imine, amine, and amide groups. In sodium-ion batteries, the modified material mNC exhibits a stable reversible gravimetric capacity in the range of 252–160 mA h g−1 at current densities of 0.05–1.00 A g−1, which is higher than the corresponding capacity of 142–96 mA h g−1 for the initial NC sample. In supercapacitors, the mNC demonstrates the highest specific capacitance of 172 F g−1 and 151 F g−1 at 2 V s−1 in 1 M H2SO4 and 6 M KOH electrolytes, respectively. The improvement in the electrochemical performance of mNC is explained by the cumulative contribution of a developed pore structure, which ensures rapid diffusion of ions, and the presence of imine, amine, and amide groups, which enhance binding with sodium ions and react with protons or hydroxyl ions. These findings indicate that hydrogenated nitrogen functional groups grafted to the edges of graphitic domains are responsible for Na+ ion storage sites and surface redox reactions in acidic and alkaline electrolytes, making modified carbon a promising electrode material for electrochemical applications

    Synthesis, molecular docking, ADMET study and in vitro pharmacological research of 7-(2-chlorophenyl)-4-(4-methylthiazol-5-yl)-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-dione as a promising non-opioid analgesic drug

    Get PDF
    The discovery of novel drugs that can block the transmission of pain signals for treating the pain of various etiologies is an urgent topic in pharmaceutics. The aim of this paper is to synthesize and to investigate in vitro and in silico characteristics of a promising novel compound: 7-(2-chlorophenyl)-4-(4-methylthiazol-5-yl)-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-dione (HSV-DKH-0450

    Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries

    Get PDF
    Highly porous nitrogen-doped carbon nanomaterials have distinct advantages in energy storage and conversion technologies. In the present work, hydrothermal treatments in water or ammonia solution were used for modification of mesoporous nitrogen-doped graphitic carbon, synthesized by deposition of acetonitrile vapors on the pyrolysis products of calcium tartrate. Morphology, composition, and textural characteristics of the original and activated materials were studied by transmission electron microscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared spectroscopy, and nitrogen gas adsorption method. Both treatments resulted in a slight increase in specific surface area and volume of micropores and small mesopores due to the etching of carbon surface. Compared to the solely aqueous medium, activation with ammonia led to stronger destruction of the graphitic shells, the formation of larger micropores (1.4 nm vs. 0.6 nm), a higher concentration of carbonyl groups, and the addition of nitrogen-containing groups. The tests of nitrogen-doped carbon materials as electrodes in 1M H2SO4 electrolyte and sodium-ion batteries showed improvement of electrochemical performance after hydrothermal treatments especially when ammonia was used. The activation method developed in this work is hopeful to open up a new route of designing porous nitrogen-doped carbon materials for electrochemical applications

    Optimization of the Magnetic Field Homogeneity Area for Solenoid Type Magnets

    Get PDF
    Homogeneous magnetic fields are important requisites in modern physics research. In this paper we discuss the problem of magnetic field homogeneity area maximization for solenoid magnets. We discuss A-model and B-model, which are basic types of solenoid magnets used to provide a homogeneous field, and methods for their optimization. We propose C-model which can be used for the NICA project. We have also carried out a cross-check of the C-model with the parameters stated for the CLEO II detector

    Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC

    Get PDF
    The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb−1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection

    Photochemistry Of Monochloro Complexes Of Copper(ii) In Methanol Probed By Ultrafast Transient Absorption Spectroscopy

    Get PDF
    Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu-II(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 Ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(H) to copper(I) and the formation of MeOH center dot Cl charge-transfer complexes. The depletion of ground-state [Cu-II(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu-II(MeOH)(5)Cl](+) and [Cu-II(MeOH)(4)Cl-2] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605
    corecore