45 research outputs found

    MARIA: Magnetic reflectometer with high incident angle

    Get PDF
    The neutron reflectometer MARIA with polarisation analysis, which is operated by JCNS, Forschungszentrum Jülich, was designed for the investigation of thin magnetic layered structures down to the monolayer scale and lateral structures

    Pink Noise of Ionic Conductance through Single Artificial Nanopore Revisted

    Get PDF
    International audienceWe report voltage-clamp measurements through single conical nanopore obtained by chemical etching of a single ion track in polyimide film. Special attention is paid to the pink noise of the ionic current (i.e., 1=f noise) measured with different filling liquids. The relative pink-noise amplitude is almost independent of concentration and pH for KCl solutions, but varies strongly using ionic liquids. In particular, we show that depending on the ionic liquid, the transport of charge carriers is strongly facilitated (low noise and higher conductivity than in the bulk) or jammed. These results show that the origin of the pink noise can be ascribed neither to fluctuations of the pore geometry nor to the pore wall charges, but rather to a cooperative effect on ions motion in confined geometry

    Testing and simulation of a thermoacoustic transducer prototype

    Get PDF
    ABSTRACT Thermoacoustic transduction is the transformation of thermal energy fluctuations into sound. Devices fabricated by appropriate materials utilise such a mechanism in order to achieve acoustic wave generation by direct application of an electrical audio signal and without the use of any moving components. A thermoacoustic transducer causes local vibration of air molecules resulting in a proportional pressure change. The present work studies an implementation of this alternative audio transduction technique for a prototype developed on silicon wafer. Measurements of the performance of this hybrid solid state device are presented and compared to the theoretical principles of its operation which are evaluated via simulations

    Influence of Ibuprofen on Phospholipid Membranes

    Get PDF
    Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Additionally, introduction of ibuprofen stiffens the membranes. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.Comment: -Improved indexing in Fig. 4e) -changed concentrations to mol% -improved arguments, however conclusions stay unchange

    Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation.

    Get PDF
    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/50/17743.long

    Mutually Beneficial Combination of Molecular Dynamics Computer Simulations and Scattering Experiments

    Get PDF
    We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination

    Mechanosensing and Sphingolipid-Docking Mediate Lipopeptide-Induced Immunity in Arabidopsis

    Get PDF
    Bacteria-derived lipopeptides are immunogenic triggers of host defenses in metazoans and plants. Root-associated rhizobacteria produce cyclic lipopeptides that activate systemically induced resistance (IR) against microbial infection in various plants. How these molecules are perceived by plant cells remains elusive. Here, we reveal that immunity activation inArabidopsis thalianaby the lipopeptide elicitor surfactin is mediated by docking into specific sphingolipid-enriched domains and relies on host membrane deformation and subsequent activation of mechanosensitive ion channels. This mechanism leads to host defense potentiation and resistance to the necrotrophB. cinereabut is distinct from host pattern recognition receptor-mediated immune activation and reminiscent of damage-induced plant immunity

    Study of interfacial phenomena by the surface plasmon resonance method

    No full text
    The objective of the present PhD thesis is the development of the experimental Surface Plasmon Resonance (SPR) method, for the study of interfacial phenomena such as the equilibrium properties and kinetics of polymer and oligomer adsorption at the liquid/solid interface. For the purposes of this work a custom-made experimental apparatus has been build and used for the acquisition of SPR experimental results. A theoretical model and various computational tools were also developed for the analysis of the experimental data. With the aid of this apparatus, the adsorption process of linear and star-like polymers at the liquid/solid interface was studied together with the self-assembly of functional oligomer monolayers on alumina surfaces. In addition, the effect of different chain structure (molecular architecture) on the formation of polymer brush layers was investigated. The experimental results are compared with measurements by neutron reflectivity experiments. For the investigation of the microscopic mechanisms that are involved in the polymer self-assembly, scaling theoretical calculations and Monte Carlo computer simulations were performed. Furthermore, by the use of thin nano-porous alumina films, a new variation of the SPR method is proposed. It is demonstrated, that this improved method is characterized by over one order of magnitude higher sensitivity in the case of the detection of adsorbed oligomers. The present thesis describes in detail the use of the SPR method for the analytical study of molecular adsorption on surfaces. The improvement of the SPR technique by the use of nano-structured materials opens new prospects for many new applications in the field of molecular detection in very dilute solutions.Αντικείμενο της παρούσας διδακτορικής διατριβής αποτελεί η ανάπτυξη της πειραματικής Μεθόδου Διέγερσης Επιφανειακών Πλασμονίων (Surface Plasmon Resonance, SPR) για τη μελέτη διεπιφανειακών φαινομένων και ειδικότερα των ιδιοτήτων ισορροπίας και της κινητικής της προσρόφησης πολυμερών και ολιγομερών στη διεπιφάνεια υγρού/στερεού. Στα πλαίσια της διατριβής, κατασκευάσθηκε εξ’ αρχής πειραματική διάταξη συντονισμού επιφανειακών πλασμονίων, η οποία χρησιμοποιήθηκε για την μελέτη του φαινομένου της προσρόφησης. Παράλληλα αναπτύχθηκε θεωρητικό υπόδειγμα και υπολογιστικά εργαλεία ανάλυσης των πειραματικών μετρήσεων. Με τη χρήση της πειραματικής διάταξης μελετήθηκε η διαδικασία της προσρόφησης γραμμικών και αστεροειδών πολυμερών στη διεπιφάνεια υγρού/στερεού όπως επίσης και τασιενεργών ολιγομερών τα οποία σχηματίζουν Αυτό-οργανούμενα Μονομοριακά Στρώματα (Self Assembled Monolayers) σε επιφάνειες οξειδίου του αλουμινίου. Επιπλέον διερευνήθηκε η επίδραση της αρχιτεκτονικής των πολυμερικών αλυσίδων σε σχέση με την ικανότητά τους να αυτο-οργανώνονται σε στρώματα πολυμερικών ψηκτρών (polymer brushes). Τα πειραματικά αποτελέσματα συγκρίνονται με μετρήσεις οι οποίες έγιναν με τη μέθοδο ανάκλασης νετρονίων. Για την κατανόηση των μικροσκοπικών μηχανισμών που υπεισέρχονται κατά την αυτό-οργάνωση των πολυμερών, γίνεται χρήση θεωρητικών υποδειγμάτων κλίμακας και υπολογιστικών προσομοιώσεων Monte Carlo. Περαιτέρω, μέσω της χρήσης λεπτών στρωμάτων νανο-πορώδους αλουμίνας, προτείνεται μια νέα παραλλαγή της μεθόδου διέγερσης επιφανειακών πλασμονίων η οποία όπως αποδεικνύεται, αυξάνει την ευαισθησία της μεθόδου κατά μια τάξη μεγέθους, στην περίπτωση της ανίχνευσης της προσρόφησης ολιγομερών. Η διατριβή παρουσιάζει ολοκληρωμένα τη χρήση της μεθόδου διέγερσης επιφανειακών πλασμονίων για την αναλυτική μελέτη της προσρόφησης μορίων σε επιφάνειες. Η επέκταση της μεθόδου με τη χρήση νανο-δομημένων υλικών ανοίγει τον δρόμο για πλειάδα νέων εφαρμογών στο πεδίο της ανίχνευσης προσροφημένων μορίων από διαλύματα ιδιαίτερα χαμηλών συγκεντρώσεων

    Distortion of surfactant lamellar phases induced by surface roughness

    No full text
    Self-assembly is a characteristic property of soft matter. Understanding the factors which assist or perturb this process is of great importance in many biological and industrial processes. Amphiphiles self-assemble and order into a variety of structures including well-ordered lamellar phases. The present work uses neutron reflectometry and neutron scattering to explore the effects of both interface roughness and temperature on the lamellar-phase structure of a non-ionic surfactant at a solid/liquid interface. The structure of concentrated solutions of tetraethyleneglycol dodecyl ether has been compared against a smooth surface and one with a roughness of the order of the lamellar spacing. This has been done in order to investigate the role perturbations have on the overall lamellar order, when these have length scales of the order of the interactions between neighboring lamellae. The results showed that the surfactant forms a well-ordered and aligned structure at a smooth surface, extending to a depth of several micrometers from the interface. Increasing the temperature of the sample and subsequent cooling promotes alignment and increases the number of oriented layers at the surface. The same sample forms a significantly less aligned structure against a rough surface that does not align to the same extent, even after heating. The perturbation of the structure caused by thermal fluctuations was found to be much less than that imposed by a small surface roughness
    corecore