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Abstract: We showcase the combination of experimental neutron scattering data and molecular
dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray
reflectometry and small-angle scattering measurements are determined by the scattering length
density profile in real space, but it is not usually possible to retrieve this profile unambiguously from
the data alone. MD simulations predict these density profiles, but they require experimental control.
Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The
strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the
opportunities provided by this combination.

Keywords: neutron reflectometry; X-ray reflectometry; small-angle neutron scattering; small-angle
X-ray scattering; molecular dynamics simulations; scattering length density profile; phospholipid
membrane

1. Introduction

Phospholipid-based bilayers are the main components of biological membranes and
represent their basic structural elements [1]. The main role of the cell membrane is to protect
the cell from its surroundings, allowing it to have a well-defined environment and accomplish
its vital functions [2]. Given the importance of the membrane, structural details for the cell
biology, several characterization methods have been used to investigate the structure under
different conditions (microscopy [3,4], spectroscopy [5,6], scattering methods [7–10] and
simulations [11–14]). Of special interest in this paper are the scattering methods that give
access to the structure and dynamics of the system under investigation. These methods
are non-invasive, non-destructive over the duration of the data collection and probe a large
sample volume, thus providing statistically relevant information [15]. The typical membrane
length scales are relatively large compared to atomic dimensions, hence the focus of this
work is on scattering by large-scale structures which can be investigated by reflectometry
and small-angle scattering methods.

Fundamentally, two main types of probe can be used for these scattering experiments:
X-rays and neutrons. Laboratory X-ray sources provide the possibility of performing
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many useful experiments and high-flux synchrotron sources make very fast and extremely
sensitive measurements feasible. Neutron scattering experiments can only be performed
at large-scale facilities, but they nevertheless play a fundamental role in the landscape of
membrane characterization methods [16–19]. In contrast to X-rays, neutrons interact in a
non-destructive fashion with the material under examination. Due to their weak interaction
with matter, neutrons have a large penetration depth for most materials, allowing for an
elaborate sample environment. Being scattered by the nuclei, and not by the electrons
as in the case of X-rays, neutrons offer the possibility to add isotopic sensitivity to the
measurements. As a great opportunity for biological systems, the neutron scattering power
of hydrogen and deuterium differs widely and neutrons are thus extremely sensitive to the
distribution of hydrogen in the sample. The most obvious strategy for taking advantage
of this property is to perform measurements on membranes prepared in light or heavy
water, but more complex (and more costly) isotopic substitution methods targeting specific
molecular sites can also be utilized.

All scattering methods provide a description in reciprocal space, which can be un-
derstood as the Fourier transform of the structure of the sample. The data thus tell about
periodicity and spatial correlation in the sample [20,21]. The interpretation of such data is
by no means intuitive and the eventual aim of all measurements is to describe the actual
position of all atoms or molecules in the sample. In the process of inverting the information
contained in scattering data from reciprocal to real space, problems arise (in particular, the
phase problem [21]), which usually hinders finding an unequivocal solution. To tackle this
issue, independent information must be found in order to put constraints on the inversion
problem. Unfortunately, there is no available experimental method offering the needed
spatial resolution over the required length scales. Nevertheless, computer simulations in
the framework of Molecular Dynamics (MD) provide invaluable insights in the real space
structure of these complex systems.

MD simulations applied to phospholipid membranes provide an atomic-level de-
scription of the system. The positions of individual atoms are followed by numerically
solving classical equations of motion. Therefore, MD simulations provide atomic resolution
unavailable to the experiments presented here. Combining MD simulations and scattering
experiments is beneficial for studying phospholipid membranes but can also be used for
the structural analysis of completely unrelated systems [22].

MD and the experimental methods described here (SAS and reflectometry) probe the
sample’s structure over a limited range of length scales. Those ranges overlap, and, hence,
cross-validation is only possible over this restricted domain [23]. Another important aspect
to consider is the fact that an MD simulation typically only describes a very brief time
interval while the integration times used for data acquisition in NR and SANS are orders of
magnitude longer (from seconds to hours). Similarly, simulations typically cover some cube
nanometers, while experiments tend to average over cube millimeters. Precautions must
thus be taken to ensure that MD simulations do not merely describe transient structures
which would be averaged out in the measurements. Conversely, simulations give access to
the Ångström scale, which is not directly probed by these experimental techniques.

In classical MD simulations, the interaction potential energy is described in the form
of a force field, based on both empirical and quantum chemical data. Validation of the
force-field parameters is a tedious and challenging task, so online topology and force-field
parameter builders have become popular as a simple solution [24–26]. One has to be
very critical of the parameters obtained in this way and ensure that the theoretical model
and applied methodology describe the molecule of interest “reasonably well”. On the
other hand, besides lower spatial resolution compared to the MD and the phase problem,
small-angle scattering and reflectometry experiments have additional experimental uncer-
tainties related to the sample and instrumentation. It is therefore theoretically possible that
inaccurate experimental data match an incorrect MD simulation perfectly.

To successfully combine these techniques, a certain level of understanding of both
scattering experiments and computer simulations is essential in order to fully understand
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the advantages and limitations of both methods and avoid putting too much (or too little)
confidence in the results extracted from one of these methods alone. One can use MD
simulation trajectories to extract neutron scattering length density profiles, directly calculate
the corresponding reflectivity or small-angle scattering pattern and plan an experiment in
order to optimize the use of beam-time at large-scale facilities. One can see the effect of
changing different parameters such as instrumental resolution, get a hint as to whether
the effect can be experimentally observed and plan an experiment in an effective and
efficient manner.

In this article, the study of a single bilayer of DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) and multilamellar SoyPC (mainly composed of 1,2-dilinoleoyl-sn-glycero-
3-phosphocholine) is used to showcase the joint use and cross-validation of MD simulation
and scattering experiments. DMPC is a double-saturated phospholipid composed of
two myristoyl chains, used in many biophysical studies [27,28] and as an excipient in
pharmaceutical formulations [29]. SoyPC is a mixture of phospholipids found in soy and
used as a model bilayer in some studies aimed at investigating the interaction of cell
membranes and active ingredients [30,31]. The aim of this work is not so much to discuss
the properties of the selected phospholipids as to describe the methodology of combining
simulation and experiment and the challenges behind it. Since there are many things that
can go wrong in both, it is important to establish the methodology and find sources of
potential errors before focusing on more complex systems.

The approach to combine simulations with scattering experiments is not new; it was
for example used to study peptide self-organization into switchable films at an air–water
interface by Xue et al. [32] and by Vanegas et al. [33] to study the insertion of the dengue
virus envelope protein into phospholipid bilayers. These techniques were also applied to
investigate the contact angles and adsorption energies of nanoparticles at the air-liquid
interface [34]. Back in 2005, Benz et al. [23] developed a protocol for comparing MD
simulations with X-ray (XRR) and neutron reflectivity (NR) and showed that neither the
united-atom GROMACS nor the CHARMM22/27 force fields could reproduce experimen-
tal data. More recently, a method for producing continuous scattering length density (SLD)
profiles from MD simulations has been presented for interpreting reflectivity data from
phospholipid bilayers [35]. Koutsioubas [36] performed coarse-grained MD simulations
with the standard MARTINI force field and obtained quantitative and semi-quantitative
agreement with neutron reflectivity data for DPPC membranes in the liquid and gel phase,
respectively. On the other hand, McCluskey et al. [37] observed that the MARTINI poten-
tial model did not accurately describe the 1,2-distearoyl-sn-phosphatidylcholine (DSPC)
monolayer, while the Berger and Slipid potential models showed better agreement.

Several computer programs for reading MD simulation trajectories, calculating the
scattering length density profile and neutron reflectivity, and making direct comparison
with the experiment have been developed over the years. SIMtoEXP [38] and Neutron-
RefTools (as a VMD plug-in) [39] were developed particularly for phospholipid membrane
research. The high number of citations shows that these solutions have been accepted and
regularly used by the scientific community. Being completely aware of their existence, we
employ here a self-written software solution that will be published soon.

In the following, we describe the different techniques, show two examples of phospho-
lipid molecules in two different morphologies and discuss the robustness of experimental
features and their constraints on real space structure.

2. Background

In order to provide the tools needed in the discussion, this section introduces some
fundamentals of scattering theory and puts them in the context of the present problem.
Keeping in mind the typical expectations of the computer simulation community, the
strong points as well as the pitfalls of the scattering methods are stressed along the way.
Momentum transfer ~Q, the natural variable against which scattering intensity is measured
in an actual experiment, is introduced first. This variable takes the radiation characteristics
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(wavelength) and the geometrical details of the experiment into account. The SLD, which
describes how strongly a given medium will scatter as a function of its composition, is then
introduced and used to express the index of refraction, which in turn is used to predict the
propagation of neutrons or photons (both considered as waves) in matter and eventually
analyze reflectometry and small-angle experiments.

Neutron and X-ray scattering experiments measure the number of scattered neu-
trons/photons as a function of the vector ~Q, which describes the momentum transfer the
wave undergoes upon scattering. ~Q is a function of the experiment geometry, which we
symbolically represent here by θ, and of the wavelength of the radiation used, λ:

~Q(θ, λ) = ~k f − ~ki (1)

where ~ki and ~k f are the wave vectors of the incident and scattered radiation, respectively.∣∣∣~Q∣∣∣ = Q ∝
2π

l
(2)

signifies that the modulus of each Q vector in reciprocal space is associated with an inter-
distance l in direct (real) space, which is characteristic of the size of the scattering structure
in the corresponding direction.

The practical problem is to compute the real space sample structure which is compat-
ible with the scattering intensity distribution, measured in the reciprocal or Q space. In
tackling this task, which is central to the whole crystallography field, the most fundamental
obstacle is the phase problem. What the detectors actually measure is the intensity, i.e.,
square of the amplitude of the scattered waves. Consequently, all information relative to the
phase of those waves is irremediably lost. From the measurement, it is therefore impossible
to unequivocally deduce the positions of the scattering particles in an absolute way and a
given experimental dataset can correspond to a multitude of real-space structures.

There are several ways to work around this ambiguity: First, one can gain additional
experimental data by performing measurements for specifically adjusted scattering con-
trast of the different constituents without affecting the sample’s structure [40]. How this
is practically achieved is discussed in detail in the next sections. While this reduces the
number of possible real-space structures considerably, a usually unachievable n(n + 1)/2
contrasts would have to be measured to be able to solve the real-space structure of n compo-
nents from the data analytically—and even if that many measurements can be performed,
experimental imperfections and limited counting statistics limit their usefulness [41].

A second method is to form periodic structures in the system. In the case of mem-
branes, this can for example be achieved by using stacks of bilayers (multilayers) that are
periodic in the direction of the membrane normal. This leads to the formation of Bragg
peaks in the scattered intensity at values of Q where the phase is either 0◦ or 180◦. In a
traditional approach, one would then use only the scattered intensity at the Bragg peak
positions where the phase can be determined [42]. Although this approach leaves the
whole information contained in the rest of the scattering pattern unused, the SLD profile
can be reconstructed precisely if many Bragg peaks are measured. In reality, however, it is
only possible to measure ∼2–5 Bragg peaks due to the disorder inherent in the system and
experimental limitations, severely limiting the precision of the extracted information. It is
also possible to take the whole scattering pattern into consideration (see [43] and references
therein), but the presence of Bragg peaks makes the precise measurement of the specular
reflectivity between the Bragg peaks somewhat unreliable, as discussed below.

Complementary to these experimental approaches, one can use a theoretical approach
in which a real-space model of the system is built with as many external constraints
as possible. The MD method is here the instrument of choice. As shown elsewhere,
although one needs to take care of several practical details [22,35,38,39], it is relatively
straightforward to compute the scattering pattern corresponding to an MD simulated
structure and compare it to the experimental data. This goes beyond the normal fitting
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procedure in which a set of parameters describing the structure is optimized in order to
reproduce the data. While this method cannot prove the accuracy of a given model, it can,
however, falsify many models, which must not be underestimated.

2.1. Scattering Length Density

In the following, we briefly describe the scattering processes and introduce the fun-
damental concept of scattering length density and its influence on the transmission and
refraction of the waves in a medium. At the end of this section, the practical possibility
of taking advantage of probe type and isotopic composition to control scattering contrast
is apparent.

The treatment for X-rays and neutrons is very similar and differs only in the interaction
of the corresponding radiation with matter. Neutrons interact with the nuclei (we leave
aside the magnetic interactions with electrons, which is generally less relevant for the study
of biological materials) while X-rays, being an electromagnetic wave, interact with the
electron cloud. We thus here use the general wording “wave” and show probe-specific
expressions only where relevant.

The interaction between a wave and a medium is described in quantum mechanical
terms by the average potential V

V =
2πh̄2

m
ρ (3)

where m is the neutron mass, h̄ the Planck constant divided by 2π, and

ρ =
1

volume ∑
j

bj (4)

is the so-called scattering length density of the medium (which we also denote by SLD)
and is the result of the superposition of all contributions bj (scattering lengths) describing
the interaction strength of each individual scatterer j.

A general solution of the Schrödinger equation which satisfies the potential V and
describes the propagation of a wave at every point~r in the medium is

Ψ(~r) = A exp
(

in~k0 ·~r
)

(5)

where n is the complex index of refraction relating k0, the wave momentum in vacuum,
and k, the momentum it would have in a material medium,

n =
k
k0

. (6)

The real part of n describes the wave phase velocity in the medium, while the imagi-
nary part describes the absorption phenomena by damping the wave intensity, which is
the square of the modulus of Ψ. In the neutron case, the absorption is usually negligibly
small and n is a real number.

Similar to what we experience in everyday life while looking at things, scattering
methods give us the ability to distinguish different parts of the samples from each other
only if their indices of refraction differ, irrespective of their chemical nature.

For X-rays, the scattering length is proportional to the product of the atomic number
Z and the classical electron radius or Thomson scattering length r0 ≈ 2.82 fm. The energy
dependence of the scattering length, which varies abruptly around absorption edges, is
described by semi-empirical atomic scattering factors f1 and f2, leading to the following
expression for the refraction index where N denotes the number concentration of the
given atom:

nX = 1 − 1
2π

Nr0λ2( f1 + i f2) (7)
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For neutrons, the energy-independent nuclear scattering length b substitutes the
electron radius in the previous expression and one gets

nn0 = 1 − 1
2π

λ2ρ . (8)

As can be intuitively expected from the nature of their interaction, in the case of
neutrons the scattering lengths of different isotopes of the same element differ from each
other. This isotopic dependency of b is seemingly random [44], but it is very interesting to
observe that, in the case of hydrogen and deuterium, the difference is very large, bH being
−3.74 fm for hydrogen and bD = 6.67 fm for deuterium.

From those observations, it is clear that X-rays and neutrons will experience a different
index of refraction between the components of the sample, thereby introducing a contrast
between those regions. As hinted in the Introduction, one can thus obtain additional
independent information about the system under investigation by: (a) combining X-ray
and neutron measurements; and/or (b) varying the isotopic composition of the sample
used for neutron scattering while keeping its chemical composition and structural details
essentially unchanged. In the context of molecular biology, it is clear that advantage can be
taken of this method by tuning the isotopic composition of the ubiquitous water molecules.
By simply mixing H2O and D2O, one can adjust the contrast with precision [45,46]. More
complex isotopic substitution schemes, for instance at specific molecular sites, can also be
used to achieve more targeted control [47,48].

2.2. Reflectometry

Reflectometry takes advantage of the variation of the index of refraction across planar
interfaces in order to investigate structural and compositional profiles.

When a wave impinges on a flat and smooth horizontal surface separating two media
(denoted 1 and 2), it can be reflected back into the original medium (reflection into 1) or
refracted into medium 2. Since the ideal interface we describe is an SLD fluctuation along
the vertical direction only, it cannot affect the in-plane components of the incident wave’s
momentum. The reflection is purely specular and happens under the same angle as the
angle of incidence.

The convenient variable to describe this problem is again the momentum transfer
vector ~Q, which is here strictly vertical:

~Q = ~k f − ~ki =
∣∣∣~Q∣∣∣ · ~nz = Qz · ~nz , (9)

where ~nz is the unit vector along the vertical direction, z.
Since we are only considering elastic scattering, the norm of the momentum of the

wave is conserved and

Qz =
4π sin(θ)

λ
(10)

where θ is the angle of incidence on the surface.
Regarding the refracted wave, since the index of refraction differs in the two media

k1/k2 = n2/n1, (11)

and, following the above argument that the in-plane components of k cannot change, we get

n1 cos(θ1) = n2 cos(θ2) (12)

where θ1 is the angle of incidence and θ2 is the refraction angle, both measured between
the surface and the corresponding propagation vector. The above relationship is no other
than Snell’s law of optics, which also holds for neutrons and X-rays.
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From this relation, if the index of refraction is smaller than 1 (often the case for
neutrons and X-rays), there exists a critical Q below which θ2 will be zero, i.e., below which
the incident wave will undergo total reflection by the interface:

Qc = 4
√

π(ρ1 − ρ0) (13)

The amplitude reflectivity (r) and amplitude transmitivity (t) of the surface are given
by the Fresnel relationships, which can be derived from continuity conditions. Applying
the small-angle approximation, which holds in the case of reflectometry measurements,
leads to [49]

r =
Areflected
Aincident

=
θincident − θrefracted
θincident + θrefracted

and (14)

t =
Arefracted
Aincident

=
2θincident

θincident + θrefracted
, (15)

where A represents the respective amplitudes.
In the case of stratified media on a semi-infinitely thick substrate, a valid description

of practical experiments one might perform to study supported thin films, the impinging
wave can undergo reflection or refraction at each interface. The wave emerging from the
surface is the superposition of all the waves which have traveled paths through the sample
that do not end up being transmitted into the semi-infinite substrate.

Similar to the simple case of a single interface, one can express the amplitude re-
flectivity and the amplitude transmitivity via the Fresnel equations. Starting from the
semi-infinite substrate where no multiple reflections are to be considered, one can then re-
cursively reconstruct the reflectivity at the topmost surface. This method, which leads to an
exact result, was introduced by Parratt [50]. A computationally convenient method based
on the formalism of optical transfer matrices was independently proposed by Abelès [51,52]
and leads to the same exact result.

If the interface between regions of different SLD is diffuse rather than sharp as as-
sumed above, two approaches can be used for the evaluation of the reflectivity. The
first approximation was proposed by Névot and Croce [53]. It introduces an interfacial
roughness factor which damps the reflected waves and which is expressed in a similar
way as the Debye–Waller factor describing, in crystallography, the effect of the thermal
motion blurring the atomic positions and thereby lowering the diffracted intensities. In
this model, the position of the interface is described as normally distributed around its
nominal position with a given standard deviation σ. The corresponding SLD profile is
a smooth transition from one SLD to the next in a sigmoidal step described by the error
function associated to the standard deviation. This approach has the obvious advantage of
describing the diffuse interface by a single number. However, it has to be stressed that this
approximation is only valid if the roughness is much smaller than the layer thickness.

The second method used to deal with diffuse interfaces, while more computationally
demanding, makes it possible to describe arbitrary SLD profiles. In this second approach,
the SLD profile is simply discretized into bins thin enough to ensure that they can be
considered to be of constant SLD. The reflectivity computation can then follow without
further approximation by means of either the Paratt or the Abeles algorithm. Although
this approach is potentially able to better “follow” the actual SLD profile and can deal with
diffuse areas too broad to be safely described by a Nevot–Croce roughness parameter, it
lacks the ability to condense structural information in simple and clear parameters such
as layer thickness, width of a transition region, etc. Such a convenient description can of
course nevertheless be obtained a posteriori by adjusting an analytical model to the binned
SLD profile used for the simulations.

It should be kept in mind that, whatever the chosen approach used to describe diffuse
SLD transition regions, different lateral distributions of matter could lead to the same SLD
profile along the vertical. The in-plane fluctuations, which have been averaged out here,
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would be the cause of the off-specular scattering. The two types of reflections—specular
and off-specular—can be easily understood with the help of an everyday-life analogy: the
specular (literally, mirror-like) behavior is what we observe when we contemplate the
sunset reflection on the surface of a perfectly still lake, on a windless evening. This image
of an undeformed sun tells us that the surface of the water is perfectly flat (and reflective).
If we repeat this contemplation while a strong wind is blowing, we will only be able to
see a blurry image of the sun on the water surface: the lateral structures on the surface,
its roughness, will reflect the light away from the expected ideal trajectory, hence in an
off-specular or non-specular way. A detailed analysis of the blurred image could lead to an
understanding of the details of the wavy surface. Practical implications of the presence of
off-specular scattering are discussed briefly when dealing with actual measurements.

The description of the specular reflectivity evaluation for a given SLD profile given
above is exact and can be used for numerical evaluations. It is, however, interesting to keep
the results obtained in the framework of the first Born approximation in mind, i.e., in the
limit of weak scattering. In this case, one gets the “master-equation of reflectivity” [49]:

R = RFresnel

∣∣∣∣∫ dρ

dz
exp(iQz)dz

∣∣∣∣2 (16)

which relates the reflectivity of an interface with arbitrary interfaces to the reflectivity of a
multilayer with sharp interfaces (RFresnel) and the spatial rate of change of the SLD, ρ.

The Born approximation clearly does not hold for small values of Q, for which many
reflections or even total reflection take place, but it can be used to gain intuition about
the reflectivity observed at large Q. This expression of scattering as a Fourier transform
of real space makes it clear that the reflectivity curve of a layer of thickness l will display
oscillations as a function of Q having a period given by 2π/l. In the case of periodic
structures such as those encountered, for instance, in multilayered phospholipids, intensity
will build up at specific locations in Q space and appear as the Bragg peaks known in
diffraction. Moreover, it is clear from this expression that only regions which display an SLD
contrast (i.e., where the derivative of the SLD is not zero) will contribute to the reflectivity.
Last but not least, this Fourier-transform approach also helps understand the origins of
the spatial resolution limits of the scattering methods: the maximal observed Q value will
determine the size of the smallest object which can be resolved by a scattering experiment.

Reflectometry is the method of choice when focusing on planar surfaces or buried
interfaces. The sample consists of ∼10 cm2 substrate covered with a sample layer, resulting
in very low amounts of sample required for an experiment. The measurement geometry
means that one is exclusively sensitive to the direction along the interface normal in
specular scattering and can get separate information about in-plane correlations through
off-specular scattering.

2.3. Small-Angle Scattering

Differently from reflectometry, which probes the characteristics of planar interfaces,
in a small-angle scattering (SAS) experiment, the characteristics of scattering objects (gels,
polymer blends, porous structures, micelle aggregates, etc.) are measured in bulk [54]. In
SAS geometry, a collimated beam hits a sample, such as an aqueous solution or a solid,
and is (elastically) scattered. As the name indicates, only scattering at low angles (≤30 deg)
is recorded by a detector. For isotropic samples, the scattering pattern has no azimuthal
dependence and depends uniquely on the modulus of the vector ~Q, Q = 4π sin(2θ/2)/λ,
where 2θ is the scattering angle. From reduction of the experimental data, an important
quantity, namely the scattering cross section dΣ/dΩ, is obtained as a function of ~Q. This
quantity represents the ratio between the number of particles (photons or neutrons) that in
the unit of time are scattered in a certain direction reaching a solid angle element dΩ and
the product between the flux of the incident particles on the sample and the value of the
solid angle element itself. dΣ/dΩ provides important information about the shape of the
scattering structures inside the sample, as well as on the inter-particle interactions [55].
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In contrast to reflectometry, the first-order Born approximation is used for the evaluation
of SAS data over the whole Q range since multiple scattering effects can usually be neglected.
This simplifies data evaluation since, under this approximation, dΣ/dΩ may be expressed as
the square modulus of the Fourier transform of the SLD profile ρ(~r) [56]:

dΣ
dΩ

=
∣∣∣ρ(~r) exp

(
i~Q~r
)

d3~r
∣∣∣2 (17)

For the case of scattering from objects with spherical symmetry, integration may be
carried out in spherical coordinates and Equation (17) may be simplified to:

dΣ
dΩ

=

∣∣∣∣4π
∫

ρ(r)r2 sin(Qr)
Qr

dr
∣∣∣∣2 (18)

which can be used to simulate the cross section starting from the knowledge of the SLD
profile obtained from MD.

Compared to reflectometry, where the surface to be probed is suitably prepared on an
optically smooth surface, SAS experiments are performed in bulk. The sample is therefore
certainly not perturbed by the addition of a substrate. The absence of a substrate also
means that it does not have to be described in the model to evaluate the data. Last but not
least, the sample preparation is typically easier than the preparation of samples used in
reflectometry, where many experimental efforts must be provided to deposit a layer on
the substrate.

2.4. Molecular Dynamics Simulations

There are several ways to perform atomistic or coarse-grained computer simulations
of phospholipid membranes, in particular using Monte-Carlo (MC) or Molecular Dynamics
(MD) approaches. In both cases, the interaction potentials between all atoms in the system
have to be defined in a force field. There are two parts to a force field: the functional forms
of the potentials (e.g., exponential or polynomial) and the parameters in these functions.
The choice of the appropriate force field (all-atom, united-atom or coarse grained) and
its parameters is the crucial step in every MD simulation. Among many available force
fields (AMBER, GROMOS, OPLS, CHARMM, etc.) and their variations, the one validated
against the reliable experimental data for the molecules of interest has to be used [57]. If
there is no reliable force-field validation data in the literature or if the simulation does
not reproduce experimental data, non-trivial force-field parameterization is required. For
generating multi-component lipid membrane configurations for MD simulations, there are
the MemGen web server [58] and Packmol package [59].

The simulations necessarily simplify the system enormously; a striking example is the
contraction of the atoms’ electron clouds into usually fixed point-like partial charges, hereby
removing, inter alia, polarizability effects. The simulations can therefore not be expected to
reproduce all the properties of the membrane at the same time. The art of creating a force
field is therefore to tune the functions and parameters such that the quantities of interest
are reproduced while others can be incorrect.

MD simulations produce trajectories depicting the motions of atoms over a specified
simulation time, usually on the nanosecond to microsecond timescale—depending on the
force-field complexity and available computational resources. Some of the most impor-
tant analyses, technical challenges and existing protocols that can be performed on MD
trajectories of the phospholipid membrane were reviewed by Moradi et al. [60]. However,
biological processes related to phospholipid membranes are complex and usually challeng-
ing either from an experimental or computational aspect. This comprises membrane pore
formation, membrane fusion, stalks, domains and curvatures [11,12,61].
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3. Materials and Methods
3.1. Materials

For the experiments on a single supported bilayer of DMPC (1,2-dimyristoyl-sn-
glycero-3-phosphocholine, Avanti polar lipids), lipids were dissolved in chloroform fol-
lowed by solvent evaporation under a stream of nitrogen gas. The lipids were subsequently
dissolved in 50 mM HEPES, 50 mM NaCl pH 7.3 buffer followed by sonication to produce
vesicles, before being pumped across the reflectivity cell to form a continuous bilayer in
50 mM HEPES, 50 mM NaCl pH 7.3 buffer.

The substrate for the DMPC bilayer consisted of a highly polished silicon block
coated with a natural silicon oxide layer. The reflectivity cell was connected to a sys-
tem where a HPLC pump was used to run the buffers through the sample. Four buffer
contrasts were used in these experiments: H2O with SLD = −0.56 × 10−6 Å−2, D2O
(SLD = 6.35 × 10−6 Å−2), silicon matched water (SiMW) composed of 38% D2O and 62%
H2O (SLD = 2.07 × 10−6 Å−2) and 4-matched water (4 MW) composed of 66% D2O and
34% H2O, (SLD = 4.00 × 10−6 Å−2). The mass of DMPC in the neutron beam during the
reflectometry experiment was on the order of 1µg.

The experimental procedures used to prepare multilayers of SoyPC have been dis-
cussed elsewhere [31] together with the chemicals used. Briefly, the phospholipid mixture
was dissolved in pure isopropanol and the resulting solution was poured on top of an
ultra-polished silicon mirror. The solvent was then removed by keeping the mirror at first
at reduced pressure and then under vacuum for a few hours. The mirror was then mounted
into a custom-made sample cell and filled with heavy water. In order to visually inspect
the SoyPC layer and check for eventual air bubbles formed after injection of D2O, the cell
was equipped with a glass cover. Samples used for SANS investigations were prepared
starting from a stock solution, dissolving a suitable amount of SoyPC in pure chloroform.
The dissolution was favored by a slight warming (40 ◦C) and a very short sonication
treatment (≈5 min). A thin film was subsequently obtained through slow evaporation
of the chloroform in a stream of argon, in order to prevent phospholipid oxidation. The
phospholipid film was hydrated with D2O, and the resulting suspension was vortexed and
then gently sonicated (≈30 min). An aliquot was then repeatedly extruded through a poly-
carbonate membrane of 100 nm pore size 11 times. The concentration of the hydrogenated
SoyPC in D2O was 5.0 mmol/kg. The mass of SoyPC in the neutron beam during the
SANS experiment was on the order of 1 mg. During the SANS experiment, the sample was
contained in a closed Hellma 404-QX quartz cell that had a thickness of 2 mm, to prevent
solvent evaporation.

3.2. Reflectometry

The neutron reflectivity measurements on DMPC were taken at the ISIS and Muon
Source at the Rutherford Appleton Laboratory, Harwell Science and Innovation Centre,
using the time-of-flight SURF instrument [62]. The neutron wavelength ranges from 0.5
to 7 Å, a Q range between ∼0.01 and 0.3 Å −1 was obtained by measuring three different
angles θincident = 0.35◦, 0.65◦ and 1.5◦. The slits were chosen to ensure a footprint of 30 mm
by 60 mm at the sample stage with an angular resolution of dQ/Q = 3.5%. Vertical slits
were scaled linearly with angle. The time-of-flight spectra were recorded with a 3He point
detector [63].

Specular and off-specular reflectivities of the SoyPC multilayer were measured at the
vertical reflectometer MARIA [64,65] at Heinz Maier-Leibnitz Zentrum (MLZ) in Garch-
ing, Germany, as detailed elsewhere [31]. A neutron beam with an average wavelength
λ = 10.0 Å and a wavelength spread of ∆λ/λ = 0.10 was used. A 4.1 m collimation length
with entrance and exit openings of 1.0 mm was used to collimate the incident beam. The
sample was mounted on a goniometer and aligned. Reflectivities were measured by
varying the incident angle and recording the pattern of the scattered neutrons with a
two-dimensional 3He position sensitive detector positioned at 1.9 m from the sample. The
experiments were carried out at room temperature.
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3.3. Small-Angle Scattering

A SANS measurement on SoyPC liposomes was carried out at the KWS-1 diffrac-
tometer [66] installed at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
As detailed elsewhere [31], neutrons with average wavelengths of λ = 5.0 Å and a wave-
length spread ∆λ/λ = 0.10 were used, by means of a mechanical velocity selector. A
two-dimensional 128 × 128 array 6Li scintillation position sensitive detector measured neu-
trons scattered from the sample. Three collimation (C)/sample-to-detector (D) distances
(namely, C8/D2, C8/D8 and C20/D20, with all distances in meters) allowed collection of
data in the scattering vector modulus Q = 4π sin(2θ/2 )/λ ranging between 0.0012 and
0.43 Å−1, with 2θ being the scattering angle. The investigated sample was kept under
measurement for a period so as to have ≈2 million counts of neutrons. The obtained
raw data were corrected for background and empty cell scattering and were then radially
averaged. Detector efficiency corrections and transformation to absolute scattering cross
sections were executed using a secondary plexiglass standard [67].

3.4. Molecular Dynamics Simulations

MD simulations were carried out using GROMACS 2018.1 package [68]. Initial config-
urations were generated using Packmol [59].

1,2-dilinoleoyl-sn-glycero-3-phosphocholine simulations were carried out in a fully
flexible simulation cell containing two phospholipid bilayers consisting of 128 molecules
per bilayer (64 molecules per sheet) and 3000 SPC water molecules between the layers
was simulated at NPT conditions using Parrinello–Rahman pressure coupling and Nosé–
Hoover temperature coupling. The pressure was set to 1 atm through a semi-isotropic
coupling with the x/y isothermal compressibility set to 4.5 × 10−5 bar−1, while the phos-
pholipids and water were independently coupled to thermal baths at 300 K with a coupling
constant of 0.1 ps. The simulations were run for 100 ns with a time step of 1 fs. The equa-
tions of motion were integrated using the Verlet leap-frog algorithm. The long-range
electrostatic interactions after a cut-off distance at 0.8 nm were accounted for by the particle-
mesh Ewald (PME) algorithm [69]. The 12-6 Lennard–Jones interactions were treated by
the conventional shifted force technique with a switch region between 1.2 and 1.4 nm.
Cross-interactions between different atom types were derived using the standard Lorentz–
Berthelot combination rules. United-atom GROMOS 54A7 force-field parameters were
used. The model includes 63 atoms (as opposed to to 134 atoms for the all-atom model)
since the hydrogen atoms are integrated into the heavy atoms. Periodic boundary con-
ditions (PBC) were applied in all dimensions. The first step of the simulation was an
equilibration process for 5 ns. After that, 100 ns of NPT simulation were performed, saving
coordinates every 2 ps for analysis.

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) simulations of 128 DMPC phos-
pholipids and 3655 SPC water molecules were performed with the Berger parameters [70],
with the coordinate, force-field and topology files distributed by D. Peter Tieleman
(http://wcm.ucalgary.ca/tieleman/downloads, accessed on 1 June 2021). Twenty nanosec-
onds of NPT simulation were performed with 1 fs time steps, saving coordinates every 2 ps.
The resulting area per phospholipid was found to be 60 Å2, which is the same value as the
one obtained by Darré et al. [39] with the CHARMM36 force field and TIP3P water model.

Snapshots were rendered in VMD [71]. The trajectories were either analyzed us-
ing TRAVIS-1.14.0 [72,73] and Python scripts written in-house or a new Python program
dedicated to this purpose, Made2Reflect. This approach allows automatizing analysis of
very large trajectories (20–100 ns, i.e., ∼20–30 GB in .pdb format), consequently improv-
ing statistics and the calculation of scattering length density profiles on the 10–30 min
timescale. Using Python makes the script flexible and easy to adjust to the specific needs
of monolayers, multilayers, substrates, etc. In Travis, the density profile function (DProf)
was used to calculate the number density distribution of particles along the z axis, i.e., the
direction perpendicular to the phospholipid membrane. The result is a histogram that
gives the particle density of a selected particle type (either in nm−3 or relative to uniform

http://wcm.ucalgary.ca/tieleman/downloads
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density) in thin slices of the system perpendicular to the chosen vector. The distribution is
calculated for every molecule and each atom type. In the next step, the number distribution
was multiplied by the atomic scattering length obtaining a scattering length density profile.
Since the number distribution is calculated for each atom, it allows for a selective deutera-
tion, i.e., selective isotopic substitution, simply by multiplying the number distribution of
selected atoms by the scattering length of D instead of H.

4. Results
4.1. Single Bilayer Neutron Reflectivity of a DMPC Bilayer

To model the scattering of a single DMPC bilayer, a scattering length density profile
has to be constructed in real space. This can be achieved either by using an analytic
approach where the number densities of different atom types are approximated, e.g., by a
Gaussian, or using a numerical approach such as the discretized number density generated
from MD simulations. We use here the discretized number density profile of each atom
type calculated from the MD simulation so that one can plot and visualize the distribution
of the single atom type, specific molecule or its parts. Figure 1 shows the number densities
of different elements extracted from an MD simulation, summed up for phospholipid
heads and tails separately as an example. Many snapshots along the trajectory were sliced
into fine bins (with 0.13 Å thickness) along the z axis, the membrane normal, and the
different elements/isotopes were histogrammed in these bins. The time average (using the
full length of the trajectory) was taken and the number densities of each atom type were
multiplied with their respective neutron scattering lengths. The sum of all contributions,
i.e., the total scattering length density profile, is also shown in this figure for different
H/D substitutions of the water, i.e., contrast variation—H2O, D2O, water with a scattering
length density matched to the one of silicon (SiMW, 2.07 × 10−6 Å−2) and water with a
scattering length density matched to be 4 × 10−6 Å−2 (4 MW).

The first validation step of the calculated SLD profile is to compare the numerical H2O,
D2O, SiMW and 4MW SLD values with the theoretical bulk SLD values given as dashed
lines on the right-hand side of Figure 1. If these were mismatched, either the density
obtained from the simulation or the SLD calculation would be incorrect. The next step
is to model a semi-infinite silicon substrate with a native SiO2 layer. The SLD, thickness
and roughness of this layer must be obtained through NR measurements and subsequent
modeling of Si/SiO2/D2O and Si/SiO2/H2O. The very same characterized silicon wafer
is then used for measuring the NR of the phospholipid bilayer. The modeled substrate is
given with dashed lines on the left-hand side of the SLD profile (Figure 1). Merging the
simulation SLD with the solid substrate SLD has to be performed with caution since one
can produce unwanted artefacts in the reflectivity curve [35]. Particular attention has to be
given to the treatment of the substrate roughness, as shown below.

Figure 2 shows the comparison between the measured NR of a single DMPC bilayer
and reflectivity calculated directly from an MD simulation. Very good agreement can be
observed since the MD curves match all four measured contrasts simultaneously. As the
simulations were run without a solid support and the silicon was added by hand while
building the SLD profile, the water layer between the substrate and phospholipid head
groups also has to be adjusted to fit the experimental data [36]. The layer being about 1 nm
thick is in agreement with the literature [74]. The effect of changing this thickness on NR is
also shown in Figure 2 (dashed lines). The 5 Å thinner water layer considerably flattens
the bump in the reflectivity. As shown below, the influence of this water layer on NR is
comparatively minor for multilamellar phospholipid systems.
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Figure 1. (a) Snapshot of the MD simulation of a single free-floating DMPC bilayer in water. The
lipid tails can be seen in green, whereas the water molecules are red/white. (b) The extracted number
density of atoms after averaging over the whole simulation time and summed together based on
their presence in a certain group (water/heads/tails). (c) Neutron scattering length density (SLD) at
four different contrasts calculated from the different atomic number densities. Shaded regions are
hand-modeled SLD values for Si/SiO2 (left) and bulk solvent (right). The SLD can be negative.
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Figure 2. Neutron reflectivity of a DMPC bilayer on a silicon substrate in water for four different H/D
contrasts. Points represent experimental data and lines are neutron reflectivity calculated directly
from the MD simulations. The curves are shifted along the y axis by a factor 10 each for clarity; they
all extrapolate to R(Q = 0) = 1. Dashed lines show the effect of reducing the water layer thickness
between the substrate and phospholipid head groups from 10 to 5 Å.

There are several parameters related to the experimental setup that have to be taken
into consideration when calculating reflectivities from an MD simulation, such as the
instrumental resolution, background scattering and substrate roughness. It can also be
seen that only two contrasts (D2O and 4 MW) exhibit a critical edge and that only the D2O
measurement covers it with data points. This means that, for all but the D2O measurement,
one has to rely on the scaling of the measured intensities to absolute values.

4.2. Neutron Reflectivity of a SoyPC Multilayer

The experimented presented in Section 4.1 demonstrated the methodology used on
a single phospholipid bilayer. When simulating membrane fusion or stalk formation, of
course at least two membranes are required, but, given the low density of stalks, experi-
mentally multilayers (some tens to thousands of bilayers) have to be measured in order
to obtain a detectable signal. MD simulations of this many bilayers are neither practically
feasible nor useful, since the multilayer can be constructed by repeating the SLD profile of
a single bilayer a suitable number of times. This section focuses on the main new features
observed and the data evaluation challenges encountered during the study of a multilayer
via reflectometry. As an exemplary system, multilamellar SoyPC was chosen since it was
hypothesized that, for this phospholipid mixture, the presence of a drug promotes stalks
formation [31], and, before MD and scattering methods can be used to look into the details
of this question, a good description of the pure and unperturbed system is needed. SoyPC
is a mixture of five major lipid components; only the most abundant polyunsaturated 1,2-
dilinoleoyl-sn-glycero-3-phosphocholine (which we indicate in the following with DLPC, to
not be confused with saturated 1,2-dilauroyl-sn-glycero-3-phosphocholine) was simulated
by MD.

As in the previous case of DMPC, two DLPC bilayers separated by a water layer were
simulated and the obtained SLD is presented in Figure 3 for two different contrasts. Once
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the SLD profile of a single bilayer is extracted from the MD, a multilayer is straightforwardly
built by simply repeating the SLD profile n times in z direction. In the case of DLPC, 36
phospholipid bilayer repetitions were used. When applying such a perfect periodicity, this
manual merging of two repetitions (usually in the water region) must be performed with
caution so that the thickness of each water layer stays the same. Otherwise, an artificial
rupture of symmetry can be introduced and the lattice constant would then be doubled.
This would introduce a new peak in the calculated NR, at a Q position corresponding
to half that of the first Bragg (demonstrated in Figure 4 as a dashed red peak). It is,
however, also easily possible to introduce a certain degree of disorder in this step by
adding randomness to the water layer thicknesses. In order to simulate the reflectivity in
this case, one has to produce a large number of such structures and average the simulations.
Such an incoherent addition is valid here since it is expected that the lamellar fluctuations
and the corresponding interlamellar distances should be uncorrelated [75].
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Figure 3. (a) MD simulation snapshot of the double phospholipid bilayer. (b) SLD profile of the first contrast,
H2O/bilayer/H2O/bilayer/H2O. Note that there are negative SLD values. The dash-dotted line indicates the SLD
of pure H2O. (c) SLD profile of the second contrast, D2O/bilayer/D2O/bilayer/D2O. The dash-dotted line indicates the
SLD of pure D2O.

The SLD profile obtained for multilamellar DLPC in D2O was then used to calculate
the reflectometry curve. The comparison with the experimental data is given in Figure 4. It
is obvious that the simulated reflectivity (blue line) reproduces the first Bragg peak and fits
the data well up to ≈0.1 Å−1. Between 0.1 and 0.2 Å−1, a discrepancy can be observed.
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Figure 4. Experimental neutron reflectivity of SoyPC multilayer in D2O compared with different
models. Green line, analytical model published by Mangiapia et al. [31]; blue line, neutron reflectivity
calculated directly from the MD simulation. The dashed vertical line marks the theoretical Qc of
Si/D2O. The dashed red peak reveals the artificial asymmetry in the repartition of the water layer
thicknesses (details in the text). The blue line in the inset shows an adjusted MD model (details in
the text).

The measurements of SoyPC were in the past evaluated with an analytical model
consisting of water, a head group region and a tail group region [31]. The different regions
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were represented by Gaussian density distributions and repeated without disorder. The
algorithm then varied the flexible parameters of the model, e.g., layer thicknesses, etc.
The data could be fitted well (green line in Figure 4) and the parameter results were very
reproducible and independent of the starting parameters: The phospholipid tail region
was fitted to be only 11 Å thick—a surprisingly small value. The water layer was 42 Å
thick. The size of the unit cell (the repeat distance of the bilayers) is very well constrained
(66 Å) by the positions of the Bragg peaks in the data. The unit cell size was therefore
kept constant by the fit, proportionally enlarging the water layer between bilayers when
reducing the bilayer thickness.

By comparing the MD SLD profile in Figure 3 with the analytical model published
in [31], it is apparent that the analytic fit of the data proposes a smaller membrane thickness
than the MD simulation. The water layer thickness in the simulation must be defined
a priori by the number of water molecules between the adjacent lipid bilayers in the
simulation box. However, this part of the SLD profile can (and must) be adjusted during
the SLD profile modeling. Taking the MD model as a starting structure and adjusting the
layer thicknesses, it was possible to reproduce the experimental data (see inset in Figure 4).
This suggests that the force field and simulation parameters have to be adjusted to increase
the density and reduce the thickness of the hydrophobic region. It might also mean that
the MD simulation of a pure DLPC system is structurally still different from the mixture
present in SoyPC.

Another feature worth noting is shown in Figure 5, which includes a zoom on the
critical edge region. The exact position of the critical edge for total reflection is a function
of the SLD difference between the semi-infinite medium on which the beam is reflected
and the semi-infinite surroundings from which the beam comes. In our case, the beam
comes through the side of a thick silicon wafer and is reflected at the interface with D2O.
The exact shape of the reflectivity decay is obviously influenced by the additional layers,
but the value of Qc below which the beam is totally reflected must remain the one of
the material combination Si–D2O. A deviation of the critical edge from the theoretical
position leads to the suspicion of a possible contamination of the D2O by hydrogenated
molecules. Two possibilities of hydrogenated molecules come to mind: normal water
(H2O) or phospholipids detached from the multilayer whose hydrogenated tails would
significantly lower the overall SLD. In the case of H2O contamination, one would expect it
to be homogeneously distributed across all hydrated parts of the sample. In the case of
the phospholipid contamination, however, the contamination would be confined to the
bulk water. Figure 5 shows the effect of both scenarios on the NR starting from the MD
simulated SLD.

The blue reflectivity curve is obtained by scaling the bulk SLD of D2O by a factor
of 0.8 on account of detached phospholipids with hydrogen-rich tails diffusing to the
bulk. In this case, the SLD of D2O between the bilayers was not scaled. The red dashed
curve is obtained by scaling the SLD of all D2O molecules by a factor of 0.8, simulating
D2O contamination with H2O during the experiments. Since these corrections did not
affect the interlamellar distance, the position of the Bragg peaks is not affected by this
change in contrast. Scaling down the D2O SLD moves Qc close to the observed value.
Adjusting the water SLD inside the lamellar structure, as in the hypothesis of light water
contamination, has the effect of reducing the overall contrast of the lamellae and affects the
Bragg peak intensity and reflectivity in the 0.1–0.15 Å−1 region. One could hope to be able
to discriminate two solvent contamination origins on this basis. However, as shown by the
green dashed curve in Figure 5, tuning the water SLD has a similar effect on the reflectivity
as reducing the number of bilayers in the multilayer.
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Figure 5. The influence of varying the SLD of D2O on the critical edge (Qc) of NR calculated from the
MD simulation. Blue line, SLD of only bulk D2O scaled by a factor of 0.8; dashed red line, SLD of all
D2O in the system scaled by a factor of 0.8; dashed green line, SLD profile after reducing the number
of layers in the modeled multilayer from 36 to 20. The dashed vertical line marks the theoretical Qc

of Si/D2O.

Neutron reflectivity measurements and reflectivity calculated directly from the MD
simulations hint at the different structure of the investigated SoyPC multilayer. While the
phospholipid bilayer thickness obtained from MD is larger than allowed by the position of
the experimental Bragg peaks, the direct unconstrained fitting of the reflectivity using the
analytical model suggests an extremely thin hydrophobic region (11 Å). From the MD point
of view, such high compression seems hardly achievable since the hydrophobic region in
that case has to be thinner than the polar heads. Additional experimental data at different
contrasts could help to lift the ambiguity. Since these experimental data were not available,
small-angle neutron scattering measurements of a single SoyPC bilayer were compared
with the MD simulations.

4.3. Small-Angle Neutron Scattering of SoyPC Bilayers

Scattering cross sections obtained from SANS experiments on SoyPC in heavy water
are reported in Figure 6. The data can be fit very well with a model of spherical unilamellar
vesicles with polydisperse solvent cores [76,77], which is also expected based on the
preparation method. A very careful inspection of the data revealed the presence of a
small contribution of multilamellar vesicles [31], which can be neglected in the Q range
presented here.

The best fit of the analytical model yields vesicles with a double-layer thickness of
(33.0 ± 1.2) Å. The SLD profile obtained from the MD simulations was used for a compar-
ison to the data. It was inserted into a model of n concentric spherical shells; the inner
radius of the vesicle and their polydispersity was optimized by a fitting procedure. The
results are displayed with a continuous red curve in Figure 6. There is a clear discrepancy
between the experimental data and the description provided by the MD results, which is
mainly due to a mismatch of the total membrane thickness. In particular, the oscillation at
Q ≈ 0.25 Å−1 is quite sensitive to this parameter. This is illustrated in the inset of Figure 6,
where two dashed curves represent adding and subtracting 2.0 Å to the optimized bilayer
thickness: a small change shifts the oscillation to higher or lower Q-values. The shoulder
at Q ≈ 5 × 10−3 Å−1 is in contrast not sensitive to the change in bilayer thickness at all and
is determined by the total size of the vesicles.

The SANS data on unilamellar vesicles clearly favor a thinner membrane than what is
simulated by MD. The associated tail thickness of only 11 Å is, however, so incredibly thin
that additional measurements on the pure DLPC system and with a variety of contrasts
should be performed before addressing an optimization of the MD force field.
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Figure 6. Scattering cross sections obtained for an extruded sample of SoyPC in D2O. The blue
line corresponds to the theoretical cross sections obtained by fitting the model described in the
text, whereas the red curve is obtained from the MD SLD profile. The inset shows a zoom on the
high-Q region together with two additional dashed curves obtained by adding (in dark green) and
subtracting (in orange) 2 Å to the value of the bilayer thickness extracted from the best fit.

5. Discussion

Both reflectometry and small-angle scattering are low-resolution techniques. Their

spatial sensitivity is limited to about dmin ∼ 2π/Qmax ≈ 2π/(0.3 Å
−1

) ≈ 20 Å. Smaller
features can still change the scattering pattern if they change the average SLD of the layer
in which they are embedded, but the information content in the data will not confine the
shape of this feature. Reflectometry has the advantage over small-angle scattering that the
sample is aligned and it is therefore possible to probe the SLD profile along the membrane
normal. The scattering signal in small-angle scattering is generally an orientational average.

Despite the limitations of the scattering data, they are some of the very few experi-
mental windows into this nano-world, and it is easy to compare simulations to the data.
This combination is particularly powerful since the simulations provide a model that is
already heavily constrained by many external inputs via the force field, while the scattering
data provide a sensitive indicator of the plausibility of the simulated structures. The ease
of comparing simulated and measured scattering curves to each other can, however, lead
to an inflated degree of trust—from an experimenter’s point of view in the simulations
and from a simulator’s point of view in the measurements. In the following, we there-
fore raise the awareness of each of the two communities for the potential problems of
the other one—while, and this cannot be stressed enough, unreservedly recommending
this combination.
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5.1. Reflectometry

For the comparison of the reflectivity curves calculated from analytical or numerical
SLD profiles to measured data, one has to take into account instrumental and sample
non-idealities.

Effects caused by the instrument vary between different instrument types (e.g.,
monochromatic or time-of-flight) and even between different instruments of the same
type. A non-exhaustive list is given in the following.

• Every instrument will have sources of background which contaminate the intensity
with a more or less random noise. These can be independent of the experiment (e.g.,
the perfectly random detection of cosmic particles) or instrument setting related (e.g.,
scattering of the probing particles on air or windows in the beam—also random and
scattering on slits—a usually more or less strongly peaked effect).

• When the sample is illuminated under a very shallow angle, it might happen that
only a fraction of the beam actually illuminates the sample. This geometric effect
will be a function of the incident angle and the real intensity distribution in the beam
(usually treated as Gaussian). In some configurations, this function could be strongly
wavelength dependent, due to the ballistic effect: on their way to the sample, long
wavelength neutrons, being slower, fall more than the short wavelength ones under
the action of gravitation. They will thus impinge on the sample at a different spot and
slightly different incident angle (an effect which also has to be taken into account to
properly evaluate Q).

• Both aforementioned effects contribute to a normalization issue: since R is a relative
measurement, one must ascertain that the full incident intensity is accurately mea-
sured. This can cause practical problems since the primary beam intensity is always
orders of magnitude more intense than the reflected one. Gross errors in this step can
be detected if enough data points have been taken in the regime of total reflection, but
more subtle effects such as the above-mentioned over-illumination are much more
difficult to detect if they affect the region where reflectivity intrinsically varies. It
should be stressed that it is quite easy to overlook significant systematic errors since
the R value is usually plotted on a logarithmic scale with 5–6 orders of magnitude.

• The measured intensity can be described by the convolution of the ideal signal with
the instrumental resolution function. This convolution smears the measured curve
and limits the possibility to resolve adjacent features (oscillations, peaks) in Q space.
In real space, this translates to an upper limit for the measurable layer thickness and
sensitivity to long-range correlations. Typically, the instrumental resolution of neutron
reflectometers ranges about 1–10% ∆Q/Q and consists of contributions of the often
dominant wavelength uncertainty and the beam divergence.

• A very careful treatment of error propagation during data reduction of the counted
intensities is needed in order to preserve the possibility to evaluate the statistical
agreement between a simulation and experimental data. Obviously, the error bar
validity issue is paramount when dealing with fitting methods, and this is even more
so when the fitted data vary over several orders of magnitude, as is the case for both
reflectivity and SANS [78].

The sample itself also contributes features to the scattering data that are not reproduced
by the computation of the reflectivity from the SLD profile:

• The sample membrane in a reflectometry measurement has to be supported by a
substrate, either solid or liquid. This substrate can have an influence on the mem-
brane properties, such as its rigidity. Studies looking at embedding larger proteins
into the membrane might even experience collisions between the proteins and the
substrate [46]. Further, the surface of the substrate can be ill-defined. While a reason-
ably thin silicon oxide layer usually does not influence the scattering data too much,
the surface roughness of the substrate has an immediate effect on the data and can
render the data useless if the roughness is not controlled to be below ∼5 Å. Besides
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influencing the quality of the data, it is clear that large surface irregularities will also
affect the membrane morphology. The other half-infinite side also adds possibilities
for imperfections that might not be mapped into the simulation: the solvent (espe-
cially when deuterated) might be contaminated with another isotope—either from
the experimental setup of channels leading to the sample chamber or by hydrogen or
hydrogen-containing groups escaping from the sample layer. This might have hap-
pened in the DLPC multilayer presented here where an amount of bilayers could have
detached from the multilayer and float in some form through the solvent, lowering
its SLD.

• A more subtle point concerns the water contrast variation. In order to make use of the
different contrasts that can be achieved by isotopic substitution, one has to assume
that the exchange between hydrogen and deuterium changes only the scattering
lengths and not the actual structure. This is generally a justifiable approximation. The
density [79,80] and many of the molecular interactions do change between H2O and
D2O [80,81], but mostly very slightly. These—usually small—changes that happen in
the real sample will of course not be reproduced by only one simulation where the
isotopic exchange is performed a posteriori by assigning different scattering lengths
to the atoms.

• The sample layer itself can also deviate from the modeled version in several aspects:
concerning the SLD, it is basically impossible for an experimenter to ascertain the
deuteration degree of the purchased phospholipids. Further, the deposition of phos-
pholipids on the substrate might not have produced the structure that was intended
(e.g., a single bilayer)—either on the complete sample or as inhomogeneities within
the membrane plane. Neutron reflectometry measurements probe a surface on the
order of 10–100 cm2: it is rather unrealistic that a phospholipid layer would coat such
a large area homogeneously. Last, inhomogeneities can of course also occur in the
direction of the membrane normal, such as a disorder of the water layer thickness
between neighboring membranes in a multilayer.

• The sample will not only scatter neutrons/X-rays into the specular spot, but will
also itself contribute an isotropic background which will add up to the extrinsic
background sources discussed above. In the case of neutron scattering, this sample-
related background level is dominated by the incoherent scattering from hydrogen
atoms in the sample and will therefore vary between different contrasts of a given
system. In the case of X-rays, the diffuse background is generated by the inelastic
Compton scattering. It is measured and subtracted from the signal together with the
off-specular scattering (see below). A remaining Q-independent background has to
be accounted for in the modeling.

• Most importantly, in reflectometry, the sample will also generate off-specular scattering.
This scattering intensity is caused by fluctuations of the SLD profile parallel to the
membrane due, for instance, to membrane fluctuations. In the current context, this
additional intensity overlaps the purely specular signal and needs to be subtracted
from the experimental values before R can be evaluated. The length scale of the
fluctuations responsible for off-specular scattering is up to the micrometer regime [20],
which renders, as hinted above, an evaluation from the computer simulations im-
possible. The usual approach is therefore to measure the scattered intensity on both
sides of the specular condition near to it in order to then interpolate the background
intensity. On modern instruments using bidimensional detectors, one does not need
to perform any additional experiment since a whole range of reflected angles is being
covered around the specular direction. Figure 7 shows the intensity distribution as a
function of incident angle (θincident) and reflection angle (θreflected). The specular line
is seen along the main diagonal (θincident = θreflected), and it shows the total reflec-
tion region at the smallest angles. Along this line, the intensity maxima correspond
to the Bragg peaks. The most prominent feature of this intensity map is, however,
the broad off-specular band which follows the condition θincident + θreflected = θBragg,



Membranes 2021, 11, 507 22 of 28

which in Q space translates to Qz = QBragg. As hinted above, this intensity band is
thus characteristic of the in-plane correlations of the structures responsible for the
Bragg peak. The broad width of the Bragg peak in the reciprocal space shows that the
bilayers are only coherent over very small length scales. Subtraction of the underlying
off-specular signal is clearly a challenging task, especially in regions where the overall
reflectivity is low, leading to poor statistics. One needs to be aware of the risk of
introducing systematic deviations from the true specular reflectivity during this data
reduction step.

Figure 7. Off-specular reflectivity map (log scale) of the multilayer sample as a function of the angle
of incidence (θincident) and of the reflection angle (θreflected). The specular reflected beam contributes
only at θincident = θreflected. The width of the recorded band around the specular line is defined by
the detector size.

5.2. Small-Angle Scattering

While there is no substrate in small-angle scattering experiments, the other issues
mentioned for reflectometry also exist for this technique. For example, unilamellar vesicles
might be neither as spherical nor as homogeneously unilamellar as assumed. If they were
produced by extensive sonication, the phospholipid molecules might even have been
damaged and lyso-phospholipids can be present in the sample [82].

Factors that do not play a role for the samples used in reflectometry but have to
be considered in SAS include the vesicle size polydispersity, which is basically always
modeled with rather simple assumptions, such as a the Schulz–Zimm distribution. It is
absolutely possible that the real size distribution is far more complex and does not smear
the features in the scattering curve in exactly the way that is modeled. In addition, the
positioning of different vesicles with respect to each other has an—often subtle—influence
on the scattering data. If the interaction between the vesicles is known, it can (and should)
be taken into consideration in the model.

The effects of an isotropic background and instrumental resolution are very similar
to those observed in reflectometry. The background due to the sample itself is usually
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accounted for in the modeling, while all other background contributions are subtracted
from the data using measurements of the empty sample container and the intrinsic noise of
the detector. The instrumental resolution has to be taken into consideration much in the
same way as for reflectometry.

Instrumental challenges that are more specific to small-angle scattering than reflectom-
etry are related to the calibration of the detector efficiency [83], especially when attempting
to obtain absolute units for the data in order to measure concentrations. Additionally,
a full small-angle scattering curve is often measured in several steps with varying colli-
mation lengths and the individual curves have to be stitched together before modeling,
mostly manually.

As discussed in the Introduction, the theoretical treatment of SANS curves relies on
the applicability of the first Born approximation. Care must be taken to avoid multiple
scattering as this is not incorporated in the theoretical evaluation of the data—unfortunately,
the absence or presence of multiple scattering is usually not apparent in the data. A practical
rule of thumb is to lower the concentration until the sample transmits at least roughly 85%
of the beam without interaction.

5.3. Molecular Dynamics Simulations

As in the case of the experiments, there are several aspects of computer simulations
that might not be immediately clear to the non specialist, which might lead to misinter-
pretation of the results. In contrast to the DMPC phospholipid, containing saturated fatty
acid chains, where simulations match experimental data very well, there is a disagreement
in the case of polyunsaturated DLPC (the main component of SoyPC). The DLPC lipid
bilayer thickness and area per lipid obtained in the MD simulation are not in agreement
with the NR and SANS measurements. The experiments suggest a larger area per lipid
(75 Å2) than the MD simulations (60 Å2) using the GROMOS 54A7 force field. The same
problem was observed for polyunsaturated 1-stearoyl-2-docosahexaenoyl-sn-glycerco-3-
phosphocholine (SDPC) bilayers [84] where high-level quantum mechanical calculations
are used to improve the force fields’ (CHARMM36) dihedral potential of neighboring
double bonds. An approach was proposed by Marquardt et al. [8] constraining the average
area per lipid while allowing the z axis to expand and contract. This issue, including the
force field reparameterization, is out of the scope of this article and will be addressed in
our future work on SoyPC, including the measurements and comparison of pure mono-
and multilamellar DLPC with the simulations.

It is important to say that simulated SLD profiles cannot be used “as received” and
several adjustments have to be made. A first crucial point is related to the thickness of
water layers: since the number of water molecules is fixed at the start of the simulation,
the water layer thickness will also be artificially defined by the MD simulation. However,
this issue can easily be solved and the water layer thickness can be adjusted as a parameter
during the SLD profile calculation while keeping all the other parameters untouched. There
are other practical reasons why the simulated system does not perfectly describe the actual
sample used during the neutron/X-ray experiments. The MD simulation will not include
the substrate and even less its interface imperfections. Due to limited computation power,
the simulated volume usually represents a small fraction of the actual sample and cannot
reproduce large-scale features such as the radius of curvature or fluctuations. The same
argument justifies why the simplest subelements of quasi-periodic systems are simulated
and then artificially reproduced, as for instance a bilayer is simulated in details rather than
a true multilayer system.

There are some more obvious reasons a simulation might not be a true representation
of reality: in a complex lipid mixture, the composition of the system under study has to
be drastically simplified. In the current example of SoyPC, it was approximated by the
most abundant phospholipid. In addition, the effects of pH are hard to reproduce: while
the pH clearly plays a major role in reality, a simulation box will contain only very few
OH−/H3O+ ions if they are included at all—and the most common force fields will not
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allow the phospholipids to change their protonation state. Besides these factors that limit
the realism of the simulations, two more craftsmanship-related issues have to be considered
since MD is nothing more than a means of sampling the phase space. First, the simulation
has to be equilibrated for a long enough time. Second, the production run has to cover a
long enough time for the system to sample the configurations in the vicinity of the energy
minimum with accurate statistics. Transitions over energy barriers or phase transitions can
pose significant obstacles against sufficient sampling. Further, there are severe limitations
in simulations when it comes to temperature and pressure: both of these can typically not
be expected to have a 1:1 relation to the real physical quantities. Just to name one example,
the freezing point of commonly used water models varies between 213 and 271 K [85]. The
last, even more general comment is that all available force fields represent only a part of the
interactions that happen in reality. Moreover, even for the interactions taken into account,
the force fields are always not more than mere simplifying parameterization. One might be
tempted to discard classical MD and make use of a priori more realistic methods based on
first principles. Apart from the fact that computing power severely limits the applicability
of those methods to a smaller number of atoms, it should be noted that even the ab initio
molecular dynamics simulations, which explicitly deal with many more effects than the
classical simulations, still contain a number of adjustable parameters that have to be chosen
by the simulation operator.

One aspect which has only been discussed briefly here and deserves some more
comments is related to lateral correlations in the plane of the sample (such as lamellar
fluctuations, undulations and fusion sites, e.g., stalks). We mention this point in the
discussion of data reduction and specifically of background subtraction. Obviously, this
scattering transports very important information about the exact nature of the in-plane
structure and treating it as mere background is wasting information. However, given
the very large length scales involved, atomic MD cannot produce relevant data and other
methods, such as coarse-grained simulations, need to be used. Once a model of the
structure has been constructed, however, well-documented software packages already exist
which could be used to compute the corresponding off-specular scattering patterns from
the reconstructed SLD distribution [86].

6. Conclusions

In this study, we showed, on the basis of a set of actual examples, how the structures
obtained from MD simulations can be used to compute the corresponding scattering
patterns in SANS and NR. It appeared along the way that several oversimplifications and
assumptions have to be carefully dealt with, notably in producing a reliable description
of the sample involving some “details” which are not simulated by MD (the substrate in
reflectometry, the multilayer, D2O/H2O contamination, substrate roughness, etc.).

Clearly, potential imperfections and intrinsic limitations of all the techniques have to be
kept in mind and overconfidence in a single observation to draw conclusions is at best risky.
In our experience, however, confronting the experiment to the simulation and vice versa is a
beneficial process for both sides as it opens opportunities for further understanding of the
systems under study and, on a more mundane level, it helps to detect and/or understand
inconsistencies (such as solvent contamination, the importance of fluctuations, etc.).

The complementarity of scattering methods and MD simulations is striking, not only
because it bridges the divide between direct and reciprocal space and helps to solve the
age old phase problem, but also because each method sheds light in the blind spot of the
other, for instance in terms of accessible length scales and timescales.

Apart from suggesting new experiments to be performed on this very system (e.g.,
monolayers and increasingly thick multilayer systems, more contrasts and eventually
moving to more complex/interesting systems such as those including drugs), this work
hints at possible methodological developments such as the systematic use of MD models
for the preparation and analysis of scattering experiments.
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The calculation of expected, reasonable scattering patterns can assist in the preparation
and the optimization of experiments to be performed at large-scale facilities. Subtle
instrumental effects could be simulated in the framework of virtual experiments such as
those performed using Monte-Carlo simulation packages [87]. Knowing where to expect
important features or how these would differ between competing models would allow
measurements to be tailored to concentrate on these regions.

One can further imagine a range of tools that would allow the investigator to alter the
MD simulation to optimize the agreement between calculated scattering curves and experi-
mental data: first, one could tweak the SLD profile without touching the simulation itself,
simply using it as a suitable starting point. Second, the deviation between calculated and
measured scattering curves can be employed as an additional contribution to the potential,
driving the simulation into a compatible configuration [88]. Third, it might be possible
to adjust individual parameters in the force field, possibly via big data/machine learning
approaches. Scattering methods are possibly the only class of experiments that probe
directly the very thing MD simulates, giving a unique angle in this ambitious endeavor.

To facilitate these ideas, a new software for calculating neutron and X-ray small-angle
scattering and reflectivity patterns directly from the MD simulation trajectory, Made2Reflect,
will be published soon. This standalone Python program allows the fast and simple analysis
of large trajectories and is applicable not only for phospholipid membranes but also for
electrochemistry, corrosion and batteries, i.e., solid–liquid and liquid–liquid interfaces
in general.
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