196 research outputs found

    Multiface: A Dataset for Neural Face Rendering

    Full text link
    Photorealistic avatars of human faces have come a long way in recent years, yet research along this area is limited by a lack of publicly available, high-quality datasets covering both, dense multi-view camera captures, and rich facial expressions of the captured subjects. In this work, we present Multiface, a new multi-view, high-resolution human face dataset collected from 13 identities at Reality Labs Research for neural face rendering. We introduce Mugsy, a large scale multi-camera apparatus to capture high-resolution synchronized videos of a facial performance. The goal of Multiface is to close the gap in accessibility to high quality data in the academic community and to enable research in VR telepresence. Along with the release of the dataset, we conduct ablation studies on the influence of different model architectures toward the model's interpolation capacity of novel viewpoint and expressions. With a conditional VAE model serving as our baseline, we found that adding spatial bias, texture warp field, and residual connections improves performance on novel view synthesis. Our code and data is available at: https://github.com/facebookresearch/multifac

    Transcriptional and mutational profiling of an aminoglycoside resistant Pseudomonas aeruginosa small colony variant.

    Get PDF
    Pseudomonas aeruginosa is a major causative agent of both acute and chronic infections. Although aminoglycoside antibiotics are very potent drugs to fight such infections, antibiotic failure is steadily increasing mainly due to increasing resistance of the bacteria. Many molecular mechanisms that determine resistance such as acquisition of genes encoding for aminoglycoside-inactivating enzymes or overexpression of efflux pumps have been elucidated. However, there are additional, less-well described mechanisms of aminoglycoside resistance. In this study we have profiled a clinical tobramycin resistant P. aeruginosa strain that exhibited a small colony variant (SCV) phenotype. Both, the resistance and the colony morphology phenotypes were lost upon passaging the isolate under rich medium conditions. Transcriptional and mutational profiling revealed that the SCV harbored activating mutations in the two two-component systems AmgRS and PmrAB. Introduction of these mutations singularly into the type strain PA14 conferred tobramycin and colistin resistance, respectively. However, their combined introduction had an additive effect on the tobramycin resistance phenotype. Activation of the AmgRS system slightly reduced the colony size of the PA14 wild-type, whereas the simultaneous overexpression of gacA, the response regulator of the GacSA two component system, further reduced colony size. In conclusion, we uncovered combinatorial influences of two-component systems on clinically relevant phenotypes, such as resistance and the expression of the SCV phenotype. Our results clearly demonstrate that combined activation of P. aeruginosa two-component systems exhibit pleiotropic effects with unforeseen consequences

    Single-nucleotide polymorphism-based genetic diversity analysis of clinical Pseudomonas aeruginosa isolates.

    No full text
    Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Since different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments. The application of tools to describe population-wide genomic diversity provides an opportunity to measure the predictability of genetic changes underlying adaptation. Here we describe patterns of sequence variations in the core genome among 99 individual Pseudomonas aeruginosa clinical isolates and identified single nucleotide polymorphisms (SNPs) that are the basis for branching of the phylogenetic tree. We also identified SNPs that were acquired independently, in separate lineages, and not through inheritance from a common ancestor. While our results demonstrate that the P. aeruginosa core genome is highly conserved and in general, not subject to adaptive evolution, instances of parallel evolution will provide an opportunity to uncover genetic changes that underlie phenotypic diversity

    Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host.

    No full text
    In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats

    Parallel evolutionary paths to produce more than one biofilm phenotype.

    No full text
    Studying parallel evolution of similar traits in independent within-species lineages provides an opportunity to address evolutionary predictability of molecular changes underlying adaptation. In this study, we monitored biofilm forming capabilities, motility, and virulence phenotypes of a plethora of phylogenetically diverse clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. We also recorded biofilm-specific and planktonic transcriptional responses. We found that P. aeruginosa isolates could be stratified based on the production of distinct organismal traits. Three major biofilm phenotypes, which shared motility and virulence phenotypes, were produced repeatedly in several isolates, indicating that the phenotypes evolved via parallel or convergent evolution. Of note, while we found a restricted general response to the biofilm environment, the individual groups of biofilm phenotypes reproduced biofilm transcriptional profiles that included the expression of well-known biofilm features, such as surface adhesive structures and extracellular matrix components. Our results provide insights into distinct ways to make a biofilm and indicate that genetic adaptations can modulate multiple pathways for biofilm development that are followed by several independent clinical isolates. Uncovering core regulatory pathways that drive biofilm-associated growth and tolerance towards environmental stressors promises to give clues to host and environmental interactions and could provide useful targets for new clinical interventions

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pppp collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceMid-rapidity production of π±\pi^{\pm}, K±\rm{K}^{\pm} and (pˉ\bar{\rm{p}})p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pTp_{\rm{T}}) range from hundreds of MeV/cc up to 20 GeV/cc. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0−-90%. The comparison of the pTp_{\rm{T}}-integrated particle ratios, i.e. proton-to-pion (p/π\pi) and kaon-to-pion (K/π\pi) ratios, with similar measurements in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV show no significant energy dependence. Blast-wave fits of the pTp_{\rm{T}} spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π\pi, K/π\pi) as a function of pTp_{\rm{T}} show pronounced maxima at pTp_{\rm{T}} ≈\approx 3 GeV/cc in central Pb-Pb collisions. At high pTp_{\rm{T}}, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pTp_{\rm{T}} and compatible with measurements at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily
    • 

    corecore