349 research outputs found
Tropical Atlantic 2006 METEOR Cruise No. 68 April 26 – August 7, 2006 Bridgetown – Recife – Mindelo – Las Palmas
4. Wochenbericht FS Meteor Reise M147
GEOTRACES - Las Palmas, Kanarische Inseln - Belém, Brasilien, 07.05.2018-13.05.201
Natural variability of geochemical conditions, biogeochemical processes and element fluxes in sediments of the CCZ
During RV SONNE cruise SO239 in March/April 2015 five sites in the area of the Clarion-Clipperton Fracture Zone (CCZ) in the eastern equatorial Pacific were visited as part of the JPI Oceans pilot action Ecological Aspects of Deep-Sea Mining“. Here, we present a comparable study on (1) the redox zonation in the sediments induced by the input flux of organic matter, (2) biogeochemical reactions including the driver of organic matter degradation and (3) diagenetic manganese redistribution and implications for manganese nodule formation
Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid-Atlantic Ridge
We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0–99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid–seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model
The influence of ultramafic rocks on microbial communities at the Logatchev Hydrothermal field, located 15°N on the Mid-Atlantic Ridge
The ultramafic-hosted Logatchev hydrothermal field (LHF) on the Mid-Atlantic Ridge is characterized by high hydrogen and methane contents in the subseafloor, which support a specialized microbial community of phylogenetically diverse, hydrogen-oxidizing chemolithoautotrophs. We compared the prokaryotic communities of three sites located in the LHF and encountered a predominance of archaeal sequences affiliated with methanogenic Methanococcales at all three. However, the bacterial composition varied in accordance with differences in fluid chemistry between the three sites investigated. An increase in hydrogen seemed to coincide with the diversification of hydrogen-oxidizing bacteria. This might indicate that the host rock indirectly selects this specific group of bacteria. However, next to hydrogen availability further factors are evident (e.g. mixing of hot reduced hydrothermal fluids with cold oxygenated seawater), which have a significant impact on the distribution of microorganism
Controls of bathymetric relief on hydrothermal fluid flow at mid-ocean ridges
We present quantitative modeling results for the effects of surface relief on hydrothermal convection at ocean-spreading centers investigating how vent site locations and subsurface flow patterns are affected by bathymetry induced sub-seafloor pressure variations. The model is based on a 2-D FEM solver for fluid flow in porous media and is used to simulate hydrothermal convection systematically in 375 synthetic studies. The results of these studies show that bathymetric relief has a profound effect on hydrothermal flow: bathymetric highs induce subsurface pressure variations that can deviate upwelling zones and favor venting at structural highs. The deviation angle from vertical upwelling can be expressed by a single linear dependence relating deviation angle to bathymetric slope and depth of the heat source. These findings are confirmed in two case studies for the East Pacific Rise at 9°30′N and Lucky Strike hydrothermal fields. In both cases, it is possible to predict the observed vent field locations only if bathymetry is taken into account. Our results thereby show that bathymetric relief should be considered in simulations of submarine hydrothermal systems and plays a key role especially in focusing venting of across axis hydrothermal flow onto the ridge axis of fast spreading ridges
Microbial CO<sub>2</sub> fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S)
Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane (∼2.6 μM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field
Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean
The thriving interest in harvesting deep-sea mineral resources, such as polymetallic nodules, calls for environmental impact studies, and ultimately, for regulations for environmental protection. Industrial-scale deep-sea mining of polymetallic nodules most likely has severe consequences for the natural environment. However, the effects of mining activities on deep-sea ecosystems, sediment geochemistry and element fluxes are still poorly conceived. Predicting the environmental impact is challenging due to the scarcity of environmental baseline studies as well as the lack of mining trials with industrial mining equipment in the deep sea. Thus, currently we have to rely on small-scale disturbances simulating deep-sea mining activities as a first-order approximation to study the expected impacts on the abyssal environment. Here, we investigate surface sediments in disturbance tracks of seven small-scale benthic impact experiments, which have been performed in four European contract areas for the exploration of polymetallic nodules in the Clarion-Clipperton Zone (CCZ). These small-scale disturbance experiments were performed 1 day to 37 years prior to our sampling program in the German, Polish, Belgian and French contract areas using different disturbance devices. We show that the depth distribution of solid-phase Mn in the upper 20 cm of the sediments in the CCZ provides a reliable tool for the determination of the disturbance depth, which has been proposed in a previous study (Paul et al., 2018). We found that the upper 5–15 cm of the sediments were removed during various small-scale disturbance experiments in the different exploration contract areas. Transient transport-reaction modelling for the Polish and German contract areas reveals that the removal of the surface sediments is associated with the loss of reactive labile organic carbon. As a result, oxygen consumption rates decrease significantly after the removal of the surface sediments, and consequently, oxygen penetrates up to tenfold deeper into the sediments inhibiting denitrification and Mn(IV) reduction. Our model results show that the post-disturbance geochemical re-equilibration is controlled by diffusion until the reactive labile TOC fraction in the surface sediments is partly re-established and the biogeochemical processes commence. While the re-establishment of bioturbation is essential, the geochemical re-equilibration of the sediments is ultimately controlled by the burial rates of organic matter. Hence, under current depositional conditions, the new geochemical equilibrium in the sediments of the CCZ is reached only on a millennia scale even for these small-scale disturbances simulating deep-sea mining activities
Post-depositional manganese mobilization during the last glacial period in sediments of the eastern Pacific Ocean
Studies have provided compelling evidence that the Pacific Ocean has experienced substantial glacial/interglacial changes in bottom-water oxygenation. While the deep Pacific Ocean is currently well oxygenated, bottom-water oxygen concentrations (O2bw) were most likely lower during the last glacial period (LGP), which must have caused a much more compressed redox zonation in the sediments than at present.
We have sequentially leached mobilizable MnO2 and various Fe (oxyhydr)oxides and used transport-reaction modelling in order to reconstruct past redox changes in sediments of the NE Pacific. We have investigated six sites situated in various contract areas for the exploration of polymetallic nodules within the Clarion-Clipperton Zone (CCZ) and one site located in a protected area (APEI3) north of the CCZ. We found bulk sediment Mn maxima of up to 1 wt% in the upper 10 cm of the sediments at all sites except for the APEI3 site. Mobilizable Mn(IV) was the dominant Mn phase representing more than 70% of bulk Mn. As oxygen penetration depths of more than 0.5 m currently do not allow for the formation of authigenic Mn(IV) in the surface sediments of the CCZ, we postulate that lower O2bw during the LGP caused a compressed redox zonation where authigenic Mn(IV) precipitated at a shallow oxic-suboxic redox boundary. Transport-reaction modelling reveals that at O2bw of 35 µM, which were suggested to have prevailed during the LGP, the oxic-suboxic redox boundary is located in the upper 5 cm of the sediments. A distinct mobilizable Mn(IV) maximum was not found in the surface sediments of the APEI3 site indicating that the redox zonation was not as condensed during the LGP at this site due to two- to threefold lower organic carbon burial rates. Our results suggest that oxygen-deprived bottom water conditions prevailed on a basin-wide scale during the LGP and were associated with significantly different rates of biogeochemical processes and element fluxes in sediments of the NE Pacific than today
Small-scale heterogeneity of trace metals including REY in deep-sea sediments and pore waters of the Peru Basin, southeastern equatorial Pacific
Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and porewater from the upper 10 m of an approximately 7.4×13 km2 area in the Peru Basin, in the southeastern equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals, including rare earth elements and yttrium (REY), as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed the surprisingly high spatial small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e., showing a tan color associated with more Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater, with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, and positive YSN anomaly and correlate with the Fe-rich clay layer and, in some cores, also correlate with P. We therefore propose that Fe-rich clay minerals, such as nontronite, as well as phosphates, are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations between sites and within cores, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower-lying areas or precipitation due to shifting redox boundaries
- …
