66 research outputs found

    On the Underground Production of High Purity Germanium Detectors

    Get PDF
    Detectors based on high purity germanium (HPGe) are used in numerous deep underground experiments world-wide aiming at detecting rare events like double beta decay and interactions of dark matter. These detectors require the lowest possible background. A significant part of the background is due to radionuclides produced by cosmic-ray interactions with the germanium crystal. This report gives quantitative data on this activation and discusses the possible solutions. The first solution is to optimise the logistics during the crystal and detector fabrication so that the germanium spends a minimum time above ground. The second solution is to implement one or several (up to 12) production steps underground. The report also makes estimates on the future needs for germanium produced underground and the costs involved.JRC.D.4-Isotope measurement

    Testing for new physics with low-energy anti-neutrino sources: LAMA as a case study

    Get PDF
    Some electroweak models with extended neutral currents, such as those based on the E6 group, lead to an increase of the ν¯−e scattering cross section at energies below 100 keV. We propose to search for the heavy Z' boson contribution in an experiment with a high-activity artificial neutrino source and with a large-mass detector. We present the case for the LAMA experiment with a large NaI(Tl) detector located at the Gran Sasso underground laboratory. The neutrino flux is known to within a one percent accuracy, in contrast to the reactor case and one can reach lower neutrino energies. Both features make our proposed experiment more sensitive to extended gauge models, such as the χ model. For a low enough background the sensitivity to the Zχ boson mass would reach 600 GeV for one year running of the experiment

    Price assymetry in the Dutch retail gasoline market

    Get PDF
    This paper analyses retail price adjustments in the Dutch gasoline market. We estimate an asymmetric error correction model on weekly price changes for the years 1996 to 2001. We construct five datasets, one for each working day. The conclusions on asymmetric pricing are shown to differ over these datasets, suggesting that the choice of the day for which prices are observed matters more than commonly believed. In our view, the insufficient robustness of outcomes might explain the mixed conclusions found in the literature. Using two approaches, we also show that the effect of asymmetry on Dutch consumer costs is negligible

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0\u3bd\u3b2\u3b2) decay of 76Ge. The technological challenge of Gerda is to operate in a \u201cbackground-free\u201d regime in the region of interest (ROI) after analysis cuts for the full 100 kg\ub7yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Q\u3b2\u3b2 for the 0\u3bd\u3b2\u3b2 search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2\u3bd\u3b2\u3b2) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04 120.85+0.78\ub710 123 cts/(keV\ub7kg\ub7yr) for the enriched BEGe data set and 14.68 120.52+0.47\ub710 123 cts/(keV\ub7kg\ub7yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components

    Search for exotic physics in double-β decays with GERDA Phase II

    Get PDF
    A search for Beyond the Standard Model double-β\beta decay modes of76^{76}Ge has been performed with data collected during the Phase II of theGERmanium Detector Array (GERDA) experiment, located at Laboratori Nazionalidel Gran Sasso of INFN (Italy). Improved limits on the decays involvingMajorons have been obtained, compared to previous experiments with 76^{76}Ge,with half-life values on the order of 1023^{23} yr. For the first time with76^{76}Ge, limits on Lorentz invariance violation effects in double-β\betadecay have been obtained. The isotropic coefficienta˚of(3)\mathring{a}_\text{of}^{(3)}, which embeds Lorentz violation indouble-β\beta decay, has been constrained at the order of 10610^{-6} GeV. Wealso set the first experimental limits on the search for light exotic fermionsin double-β\beta decay, including sterile neutrinos.<br

    Production Chain of Isotopically Modified Ge-diodes for the 2-beta-0-neutrino-Search with GERDA

    No full text
    The procurement of Germanium-oxide (GeO2) depleted in 76Ge is presented. The quality control, the reduction and zone refinement as well as crystal pulling is described as new detection systems must be explored in order to reach the needs of modern rare event searches. The experiment GERDA aims at the detection of neutrinoless double beta (2-beta-0-neutrino) decay. The depleted Germanium project aims at the demonstration that working BEGe detectors can be produced based on a realistic material supply chain maximizing the Ge-metal to Ge-diode yield in an optimal usage of the expensive isotopically modified material.JRC.DG.D.5-Nuclear physic

    Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    No full text
    The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for neutrinoless double beta decay of 100Mo
    corecore