49 research outputs found

    Cardiovascular changes in patients with acromegaly assessed by CMR

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    In vivo bioassay to test the pathogenicity of missense human AIP variants

    Get PDF
    Background Heterozygous germline loss-of-function mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to childhood-onset pituitary tumours. The pathogenicity of missense variants may pose difficulties for genetic counselling and family follow-up. Objective To develop an in vivo system to test the pathogenicity of human AIP mutations using the fruit fly Drosophila melanogaster. Methods We generated a null mutant of the Drosophila AIP orthologue, CG1847, a gene located on the Xchromosome, which displayed lethality at larval stage in hemizygous knockout male mutants (CG1847exon1_3 ). We tested human missense variants of ā€˜unknown significanceā€™, with ā€˜pathogenicā€™ variants as positive control. Results We found that human AIP can functionally substitute for CG1847, as heterologous overexpression of human AIP rescued male CG1847exon1_3 lethality, while a truncated version of AIP did not restore viability. Flies harbouring patient-specific missense AIP variants (p.C238Y, p.I13N, p.W73R and p.G272D) failed to rescue CG1847exon1_3 mutants, while seven variants (p.R16H, p.Q164R, p.E293V, p.A299V, p.R304Q, p.R314W and p.R325Q) showed rescue, supporting a non-pathogenic role for these latter variants corresponding to prevalence and clinical data. Conclusion Our in vivo model represents a valuable tool to characterise putative disease-causing human AIP variants and assist the genetic counselling and management of families carrying AIP variants

    Long-Term Safety of Growth Hormone in Adults With Growth Hormone Deficiency:Overview of 15 809 GH-Treated Patients

    Get PDF
    Context Data on long-term safety of growth hormone (GH) replacement in adults with GH deficiency (GHD) are needed. Objective We aimed to evaluate the safety of GH in the full KIMS (Pfizer International Metabolic Database) cohort. Methods The worldwide, observational KIMS study included adults and adolescents with confirmed GHD. Patients were treated with GH (Genotropin [somatropin]; Pfizer, NY) and followed through routine clinical practice. Adverse events (AEs) and clinical characteristics (eg, lipid profile, glucose) were collected. Results A cohort of 15 809 GH-treated patients were analyzed (mean follow-up of 5.3 years). AEs were reported in 51.2% of patients (treatment-related in 18.8%). Crude AE rate was higher in patients who were older, had GHD due to pituitary/hypothalamic tumors, or adult-onset GHD. AE rate analysis adjusted for age, gender, etiology, and follow-up time showed no correlation with GH dose. A total of 606 deaths (3.8%) were reported (146 by neoplasms, 71 by cardiac/vascular disorders, 48 by cerebrovascular disorders). Overall, de novo cancer incidence was comparable to that in the general population (standard incidence ratio 0.92; 95% CI, 0.83-1.01). De novo cancer risk was significantly lower in patients with idiopathic/congenital GHD (0.64; 0.43-0.91), but similar in those with pituitary/hypothalamic tumors or other etiologies versus the general population. Neither adult-onset nor childhood-onset GHD was associated with increased de novo cancer risks. Neutral effects were observed in lipids/fasting blood glucose levels. Conclusion These final KIMS cohort data support the safety of long-term GH replacement in adults with GHD as prescribed in routine clinical practice

    Key features of puberty onset and progression can help distinguish self-limited delayed puberty from congenital hypogonadotrophic hypogonadism

    Get PDF
    Introduction: Delayed puberty (DP) is a frequent concern for adolescents. The most common underlying aetiology is self-limited DP (SLDP). However, this can be difficult to differentiate from the more severe condition congenital hypogonadotrophic hypogonadism (HH), especially on first presentation of an adolescent patient with DP. This study sought to elucidate phenotypic differences between the two diagnoses, in order to optimise patient management and pubertal development. Methods: This was a study of a UK DP cohort managed 2015-2023, identified through the NIHR clinical research network. Patients were followed longitudinally until adulthood, with a definite diagnosis made: SLDP if they had spontaneously completed puberty by age 18 years; HH if they had not commenced (complete, cHH), or had commenced but not completed puberty (partial, pHH), by this stage. Phenotypic data pertaining to auxology, Tanner staging, biochemistry, bone age and hormonal treatment at presentation and during puberty were retrospectively analysed. Results: 78 patients were included. 52 (66.7%) patients had SLDP and 26 (33.3%) patients had HH, comprising 17 (65.4%) pHH and 9 (34.6%) cHH patients. Probands were predominantly male (90.4%). Male SLDP patients presented with significantly lower height and weight standard deviation scores than HH patients (height p=0.004, weight p=0.021). 15.4% of SLDP compared to 38.5% of HH patients had classical associated features of HH (micropenis, cryptorchidism, anosmia, etc. p=0.023). 73.1% of patients with SLDP and 43.3% with HH had a family history of DP (p=0.007). Mean first recorded luteinizing hormone (LH) and inhibin B were lower in male patients with HH, particularly in cHH patients, but not discriminatory. There were no significant differences identified in blood concentrations of FSH, testosterone or AMH at presentation, or in bone age delay. Discussion: Key clinical markers of auxology, associated signs including micropenis, and serum inhibin B may help distinguish between SLDP and HH in patients presenting with pubertal delay, and can be incorporated into clinical assessment to improve diagnostic accuracy for adolescents. However, the distinction between HH, particularly partial HH, and SLDP remains problematic. Further research into an integrated framework or scoring system would be useful in aiding clinician decision-making and optimization of treatment. ā€ƒ

    Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations

    Get PDF
    Context: Aggressive pituitary tumors (APTs) are characterized by unusually rapid growth and lack of response to standard treatment. About 1% to 2% develop metastases being classified as pituitary carcinomas (PCs). For unknown reasons, the corticotroph tumors are overrepresented among APTs and PCs. Mutations in the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene, regulating chromatin remodeling and telomere maintenance, have been implicated in the development of several cancer types, including neuroendocrine tumors. Objective: To study ATRX protein expression and mutational status of the ATRX gene in APTs and PCs. Design: We investigated ATRX protein expression by using immunohistochemistry in 30 APTs and 18 PCs, mostly of Pit-1 and T-Pit cell lineage. In tumors lacking ATRX immunolabeling, mutational status of the ATRX gene was explored. Results: Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling with a higher proportion in patients with PCs (5/18; 28%) than in those with APTs (4/30;13%). Lack of ATRX was most common in the corticotroph tumors, 7/22 (32%), versus tumors of the Pit-1 lineage, 2/24 (8%). Loss-of-function ATRX mutations were found in all 9 ATRX immunonegative cases: nonsense mutations (n = 4), frameshift deletions (n = 4), and large deletions affecting 22-28 of the 36 exons (n = 3). More than 1 ATRX gene defect was identified in 2 PCs. Conclusion: ATRX mutations occur in a subset of APTs and are more common in corticotroph tumors. The findings provide a rationale for performing ATRX immunohistochemistry to identify patients at risk of developing aggressive and potentially metastatic pituitary tumors.Peer reviewe

    A HIF1Ī± Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas

    Get PDF
    Pheochromocytomas are neural crestā€“derived tumors that arise from inherited or sporadic mutations in at least six independent genes. The proteins encoded by these multiple genes regulate distinct functions. We show here a functional link between tumors with VHL mutations and those with disruption of the genes encoding for succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD). A transcription profile of reduced oxidoreductase is detected in all three of these tumor types, together with an angiogenesis/hypoxia profile typical of VHL dysfunction. The oxidoreductase defect, not previously detected in VHL-null tumors, is explained by suppression of the SDHB protein, a component of mitochondrial complex II. The decrease in SDHB is also noted in tumors with SDHD mutations. Gain-of-function and loss-of-function analyses show that the link between hypoxia signals (via VHL) and mitochondrial signals (via SDH) is mediated by HIF1Ī±. These findings explain the shared features of pheochromocytomas with VHL and SDH mutations and suggest an additional mechanism for increased HIF1Ī± activity in tumors

    Pheochromocytoma Is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction

    Get PDF
    AbstractBackgroundPheochromocytoma is associated with catecholamine-induced cardiac toxicity, but the extent and nature of cardiac involvement in clinical cohorts is not well-characterized.ObjectivesThis study characterized the cardiac phenotype in patients with pheochromocytoma using cardiac magnetic resonance (CMR).MethodsA total of 125 subjects were studied, including patients with newly diagnosed pheochromocytoma (nĀ = 29), patients with previously surgically cured pheochromocytoma (nĀ = 31), healthy control subjects (nĀ = 51), and hypertensive control subjects (HTN) (nĀ = 14), using CMR (1.5-T) cine, strain imaging by myocardial tagging, late gadolinium enhancement, and native T1 mapping (Shortened Modified Look-Locker Inversion recovery [ShMOLLI]).ResultsPatients who were newly diagnosed with pheochromocytoma, compared with healthy and HTN control subjects, had impaired left ventricular (LV) ejection fraction (<56% in 38% of patients), peak systolic circumferential strain (pĀ < 0.05), and diastolic strain rate (pĀ < 0.05). They had higher myocardial T1 (974 Ā± 25 ms, as compared with 954Ā Ā± 16 ms in healthy and 958 Ā± 23 ms in HTN subjects; pĀ < 0.05), areas of myocarditis (median 22% LV with T1 >990 ms, as compared with 1% in healthy and 2% in HTN subjects; pĀ < 0.05), and focal fibrosis (59% had nonischemic late gadoliniumĀ enhancement, as compared with 14% in HTN subjects). Post-operatively, impaired LV ejection fraction typically normalized, but systolic and diastolic strain impairment persisted. Focal fibrosis (median 5% LV) and T1 abnormalities (median 12% LV) remained, the latter of which may suggest some diffuse fibrosis. Previously cured patients demonstrated abnormal diastolic strain rate (pĀ < 0.001), myocardial T1 (median 12% LV), and small areas of focal fibrosis (median 1% LV). LV mass index was increased in HTN compared with healthy control subjects (pĀ < 0.05), but not in the 2Ā pheochromocytoma groups.ConclusionsThis first systematic CMR study characterizing the cardiac phenotype in pheochromocytoma showed that cardiac involvement was frequent and, for some variables, persisted after curative surgery. These effects surpass those of hypertensive heart disease alone, supporting a direct role of catecholamine toxicity that may produce subtle but long-lasting myocardial alterations

    The Immunophilin-Like Protein XAP2 Is a Negative Regulator of Estrogen Signaling through Interaction with Estrogen Receptor Ī±

    Get PDF
    XAP2 (also known as aryl hydrocarbon receptor interacting protein, AIP) is originally identified as a negative regulator of the hepatitis B virus X-associated protein. Recent studies have expanded the range of XAP2 client proteins to include the nuclear receptor family of transcription factors. In this study, we show that XAP2 is recruited to the promoter of ERĪ± regulated genes like the breast cancer marker gene pS2 or GREB1 and negatively regulate the expression of these genes in MCF-7 cells. Interestingly, we show that XAP2 downregulates the E2-dependent transcriptional activation in an estrogen receptor (ER) isoform-specific manner: XAP2 inhibits ERĪ± but not ERĪ²-mediated transcription. Thus, knockdown of intracellular XAP2 levels leads to increased ERĪ± activity. XAP2 proteins, carrying mutations in their primary structures, loose the ability of interacting with ERĪ± and can no longer regulate ER target gene transcription. Taken together, this study shows that XAP2 exerts a negative effect on ERĪ± transcriptional activity and may thus prevent ERĪ±-dependent events
    corecore