2,339 research outputs found

    Online, interactive user guidance for high-dimensional, constrained motion planning

    Get PDF
    We consider the problem of planning a collision-free path for a high-dimensional robot. Specifically, we suggest a planning framework where a motion-planning algorithm can obtain guidance from a user. In contrast to existing approaches that try to speed up planning by incorporating experiences or demonstrations ahead of planning, we suggest to seek user guidance only when the planner identifies that it ceases to make significant progress towards the goal. Guidance is provided in the form of an intermediate configuration q^\hat{q}, which is used to bias the planner to go through q^\hat{q}. We demonstrate our approach for the case where the planning algorithm is Multi-Heuristic A* (MHA*) and the robot is a 34-DOF humanoid. We show that our approach allows to compute highly-constrained paths with little domain knowledge. Without our approach, solving such problems requires carefully-crafting domain-dependent heuristics

    A PCA-based automated finder for galaxy-scale strong lenses

    Get PDF
    We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centered on the lens galaxy center. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity and elongation. We apply the two methods to a sample of simulated Einstein rings, as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinates transform allows us to reach a completeness of 90% and a purity of 86%, as soon as the signal-to-noise integrated in the ring is higher than 30, and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes

    Parametric hazard rate models for long-term sickness absence

    Get PDF
    PURPOSE: In research on the time to onset of sickness absence and the duration of sickness absence episodes, Cox proportional hazard models are in common use. However, parametric models are to be preferred when time in itself is considered as independent variable. This study compares parametric hazard rate models for the onset of long-term sickness absence and return to work. METHOD: Prospective cohort study on sickness absence with four follow-up years of 53,830 employees working in the private sector in the Netherlands. The time to onset of long-term (>6 weeks) sickness absence and return to work were modelled by parametric hazard rate models. RESULTS: The exponential parametric model with a constant hazard rate most accurately described the time to onset of long-term sickness absence. Gompertz-Makeham models with monotonically declining hazard rates best described return to work. CONCLUSIONS: Parametric models offer more possibilities than commonly used models for time-dependent processes as sickness absence and return to work. However, the advantages of parametric models above Cox models apply mainly for return to work and less for onset of long-term sickness absence

    Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole

    Full text link
    In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Total intensity maps were carefully calibrated, reaching a high dynamic range, 150000:1 in the case of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with full resolution figures is available at http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd

    Microlensing of Relativistic Knots in the Quasar HE1104-1805

    Full text link
    We present 3 years of photometry of the ``Double Hamburger'' lensed quasar, HE1104-1805, obtained on 102 separate nights using the OGLE 1.3-m telescope. Both the A and B images show variations, but with substantial differences in the lighcurves at all time delays. At the 310 day delay reported by Wisotzki and collaborators the difference lightcurve has an rms amplitude of 0.060 mag. The structure functions for the A and B images are quite different, with image A more than twice as variable as image B (a factor of 4 in structure function) on timescales of less than a month. Adopting microlensing as a working hypothesis for the uncorrelated variability, the short timescale argues for the relativistic motion of one or more components of the source. We argue that the small amplitude of the fluctuations is due to the finite size of the source with respect to the microlenses.Comment: As accepted for publication in ApJ. 22 pages. The discussion of microlensing at high optical depth has been shortened and a few minor points have been clarifie

    Zika virus and the current outbreak:an overview

    Get PDF
    Zika virus (ZIKV), a mosquito-borne flavivirus closely related to yellow fever virus and dengue virus, is currently causing a large outbreak in the Americas. Historically, ZIKV infection was considered a sporadic, relatively mild disease characterised by fever, maculopapular rash, conjunctivitis and often arthralgia. However, current observational studies suggest that ZIKV may cause more severe neurological sequelae such as Guillain-Barre syndrome, and birth defects, mainly microcephaly, in babies of whom the mother was infected with ZIKV during pregnancy. This article provides a clinically focussed overview of ZIKV, with emphasis on the current outbreak, clinical manifestations, diagnostic tools and caveats. </p

    Gauging the dark matter fraction in a LL_* S0 galaxy at z=0.47 through gravitational lensing from deep HST/ACS imaging

    Get PDF
    We analyze a new gravitational lens, OAC-GL J1223-1239, serendipitously found in a deep I-band image of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The lens is a L_*, edge-on S0 galaxy at z=0.4656. The gravitational arc has a radius of 0.42 arcsec. We have determined the total mass and the dark matter (DM) fraction within the Einstein radius as a function of the lensed source redshift, which is presently unknown. For z ~ 1.3, which is in the middle of the redshift range plausible for the source according to some external constraints, we find the central velocity dispersion to be ~180 km/s. With this value, close to that obtained by means of the Faber-Jackson relation at the lens redshift, we compute a 30% DM fraction within the Einstein radius (given the uncertainty in the source redshift, the allowed range for the DM fraction is 25-35 % in our lensing model). When compared with the galaxies in the local Universe, the lensing galaxy, OAC-GL J1223-1239 seems to fall in the transition regime between massive DM dominated galaxies and lower-mass, DM deficient systems.Comment: 18 pages, 5 figures; accepted for publication in Ap

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012
    corecore