410 research outputs found
High beverage sugar as well as high animal protein intake at infancy may increase overweight risk at 8 years: a prospective longitudinal pilot study
<p>Abstract</p> <p>Background</p> <p>Combined effects of early exposure to beverage sugar and animal protein and later life overweight risk have not been studied.</p> <p>Methods</p> <p>A prospective longitudinal study was initiated in 2001 with 226 infants between 4 and 13 months of age. Dietary intake was assessed with a 2 day food record. Also information on infant body weight and socio-economic status was obtained at baseline. At 8 year follow-up in 2009, children were surveyed again. Main outcome measure was overweight at 8 years as defined by BMIsds > = +1.0. Also maternal BMI, present dietary intake and physical activity, were obtained by questionnaire and 2-day food record.</p> <p>Results</p> <p>At the 8 year follow up, 120 children (53%) were surveyed again. Of those, questionnaires and food records were completed for 63 children, for the other 57 children only weight and height at 8 years was available; 20 out of 120 children (17%) were self-reported overweight at 8 years of age. Unadjusted odds ratios (ORs; 95% CI) for overweight at 8 years were 1.10 (1.02, 1.18) for beverage sugar intake per one percent of energy intake and 4.06 (1.50, 11.00) for the highest tertile of animal protein intake at infancy compared to the lowest two tertiles. After adjustment for sex, age, infant weight, breastfed at intake assessment, and socio-economic status, odds ratios were 1.13 (1.03, 1.24) for beverage sugar, and 9.67 (2.56, 36.53) for highest tertile of animal protein intake. In the subgroup with completed questionnaire (n = 63) ORs were also adjusted for current maternal overweight, more than 2 months full breastfeeding, physical activity, and energy intake, but ORs remained significantly associated with overweight at 8 years.</p> <p>Conclusions</p> <p>A high intake of sugar containing beverages as well as animal protein in the first year of life may increase the risk of overweight at 8 years. The results of this pilot investigation should be confirmed in a larger cohort.</p
Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis
Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in
local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the
development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN)
induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation,
proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the
transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGESeq
approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary
human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand.
Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of
immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators,
negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly
downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is
altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature
dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the
suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different
mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome
sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated
with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFNprimed
iDCs
Reliability of movement control tests in the lumbar spine
<p>Abstract</p> <p>Background</p> <p>Movement control dysfunction [MCD] reduces active control of movements. Patients with MCD might form an important subgroup among patients with non specific low back pain. The diagnosis is based on the observation of active movements. Although widely used clinically, only a few studies have been performed to determine the test reliability. The aim of this study was to determine the inter- and intra-observer reliability of movement control dysfunction tests of the lumbar spine.</p> <p>Methods</p> <p>We videoed patients performing a standardized test battery consisting of 10 active movement tests for motor control in 27 patients with non specific low back pain and 13 patients with other diagnoses but without back pain. Four physiotherapists independently rated test performances as correct or incorrect per observation, blinded to all other patient information and to each other. The study was conducted in a private physiotherapy outpatient practice in Reinach, Switzerland. Kappa coefficients, percentage agreements and confidence intervals for inter- and intra-rater results were calculated.</p> <p>Results</p> <p>The kappa values for inter-tester reliability ranged between 0.24 – 0.71. Six tests out of ten showed a substantial reliability [k > 0.6]. Intra-tester reliability was between 0.51 – 0.96, all tests but one showed substantial reliability [k > 0.6].</p> <p>Conclusion</p> <p>Physiotherapists were able to reliably rate most of the tests in this series of motor control tasks as being performed correctly or not, by viewing films of patients with and without back pain performing the task.</p
Spectra of supernovae in the nebular phase
When supernovae enter the nebular phase after a few months, they reveal
spectral fingerprints of their deep interiors, glowing by radioactivity
produced in the explosion. We are given a unique opportunity to see what an
exploded star looks like inside. The line profiles and luminosities encode
information about physical conditions, explosive and hydrostatic
nucleosynthesis, and ejecta morphology, which link to the progenitor properties
and the explosion mechanism. Here, the fundamental properties of spectral
formation of supernovae in the nebular phase are reviewed. The formalism
between ejecta morphology and line profile shapes is derived, including effects
of scattering and absorption. Line luminosity expressions are derived in
various physical limits, with examples of applications from the literature. The
physical processes at work in the supernova ejecta, including gamma-ray
deposition, non-thermal electron degradation, ionization and excitation, and
radiative transfer are described and linked to the computation and application
of advanced spectral models. Some of the results derived so far from
nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and
Murdin, Springer. 51 pages, 14 figure
Recommended from our members
Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil) both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities
Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions
Background: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.[br/]
Methodology/Principal Findings: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production - nitrification and denitrification - and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. [br/]
Conclusions/Significance: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence
Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China
The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline
Influence of routine computed tomography on predicted survival from blunt thoracoabdominal trauma
Item does not contain fulltextINTRODUCTION: Many scoring systems have been proposed to predict the survival of trauma patients. This study was performed to evaluate the influence of routine thoracoabdominal computed tomography (CT) on the predicted survival according to the trauma injury severity score (TRISS). PATIENTS AND METHODS: 1,047 patients who had sustained a high-energy blunt trauma over a 3-year period were prospectively included in the study. All patients underwent physical examination, conventional radiography of the chest, thoracolumbar spine and pelvis, abdominal sonography, and routine thoracoabdominal CT. From this group with routine CT, we prospectively defined a selective CT (sub)group for cases with abnormal physical examination and/or conventional radiography and/or sonography. Type and extent of injuries were recorded for both the selective and the routine CT groups. Based on the injuries found by the two different CT algorithms, we calculated the injury severity scores (ISS) and predicted survivals according to the TRISS methodology for the routine and the selective CT algorithms. RESULTS: Based on injuries detected by the selective CT algorithm, the mean ISS was 14.6, resulting in a predicted mortality of 12.5%. Because additional injuries were found by the routine CT algorithm, the mean ISS increased to 16.9, resulting in a predicted mortality of 13.7%. The actual observed mortality was 5.4%. CONCLUSION: Routine thoracoabdominal CT in high-energy blunt trauma patients reveals more injuries than a selective CT algorithm, resulting in a higher ISS. According to the TRISS, this results in higher predicted mortalities. Observed mortality, however, was significantly lower than predicted. The predicted survival according to MTOS seems to underestimate the actual survival when routine CT is used
Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis
A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination
Vaccine antigens modulate the innate response of monocytes to Al(OH)3.
Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level
- …