42 research outputs found

    Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel Space Observatory

    Get PDF
    Heterodyne mixers incorporating Nb SIS junctions and NbTiN-SiO/sub 2/-Al microstrip tuning circuits offer the lowest reported receiver noise temperatures to date in the 0.8-0.96- and 0.96-1.12-THz frequency bands. In particular, improvements in the quality of the NbTiN ground plane of the SIS devices' on-chip microstrip tuning circuits have yielded significant improvements in the sensitivity of the 0.96-1.12-THz mixers relative to previously presented results. Additionally, an optimized RF design incorporating a reduced-height waveguide and suspended stripline RF choke filter offers significantly larger operating bandwidths than were obtained with mixers that incorporated full-height waveguides near 1 THz. Finally, the impact of junction current density and quality on the performance of the 0.8-0.96-THz mixers is discussed and compared with measured mixer sensitivities, as are the relative sensitivities of the 0.8-0.96- and 0.96-1.12-THz mixers

    A 275–425-GHz Tunerless Waveguide Receiver Based on AlN-Barrier SIS Technology

    Get PDF
    We report on a 275–425-GHz tunerless waveguide receiver with a 3.5–8-GHz IF. As the mixing element, we employ a high-current-density Nb–AlN–Nb superconducting–insulating– superconducting (SIS) tunnel junction. Thanks to the combined use of AlN-barrier SIS technology and a broad bandwidth waveguide to thin-film microstrip transition, we are able to achieve an unprecedented 43% instantaneous bandwidth, limited by the receiver's corrugated feedhorn. The measured double-sideband (DSB) receiver noise temperature, uncorrected for optics loss, ranges from 55 K at 275 GHz, 48 K at 345 GHz, to 72 K at 425 GHz. In this frequency range, the mixer has a DSB conversion loss of 2.3 1 dB. The intrinsic mixer noise is found to vary between 17–19 K, of which 9 K is attributed to shot noise associated with leakage current below the gap. To improve reliability, the IF circuit and bias injection are entirely planar by design. The instrument was successfully installed at the Caltech Submillimeter Observatory (CSO), Mauna Kea, HI, in October 2006

    Sideband separating mixer for 600-720 GHz

    Get PDF
    The ALMA Band 9 receiver cartridge (600-720 GHz) based on Dual Sideband (DSB) superconductor-insulatorsuperconductor (SIS) mixer is currently in full production. In the case of spectral line observations, the integration time to reach a certain signal-to-noise level can be reduced by about a factor of two by rejecting an unused sideband. The goal is to upgrade the current ALMA band 9 cartridge to a full dual-polarization sideband separating (2SB) capability, with minimal-cost upgrade path. A new compact and modular sideband separating mixer was designed, and a prototype manufactured. The individual SIS mixer devices in the 2SB block are implemented as conventional Band 9 DSB mixers, so that existing devices can be reused and tested individually. Any ALMA DSB developments contribute to the 2SB upgrade. The first experimental results demonstrate noise temperature from 300K to 500K over 80% of the band, which will be improved to fit the ALMA requirements. Nevertheless, the frequency response for 2SB is the same as for DSB, showing that the RF design is still valid, even with different SIS mixer devices. The quality of the RF and IF design is confirmed by a sideband rejection ratio of about 15 dB, which is within the ALMA spec (>10dB )

    The Kilopixel Array Pathfinder Project (KAPPa), a 16 pixel integrated heterodyne focal plane array

    Get PDF
    KAPPa (the Kilopixel Array Pathfinder Project) is developing key technologies to enable the construction of heterodyne focal plane arrays in the terahertz frequency regime with ~1000 pixels. The leap to ~1000 pixels requires solutions to several key technological problems before the construction of such a focal plane is possible. The KAPPa project will develop a small (16-pixel) 2D integrated heterodyne focal plane array for the 660 GHz atmospheric window as a technological pathfinder towards future kilopixel heterodyne focal plane arrays

    Results of using permanent magnets to suppress Josephson noise in the KAPPa SIS receiver

    Get PDF
    We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa) instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating- Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work includes our design of a ‘U’ shaped permanent magnet, the testing and calibration procedure for the permanent magnet, and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmÀn Schizophrenia Working Grp Psychiat jÀsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
    corecore