14 research outputs found

    Stable tumor vessel normalization with pO_{2} increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment

    Get PDF
    Tumor hypoxia is a characteristic of cancer cell growth and invasion, promoting angiogenesis, which facilitates metastasis. Oxygen delivery remains impaired because tumor vessels are anarchic and leaky, contributing to tumor cell dissemination. Counteracting hypoxia by normalizing tumor vessels in order to improve drug and radio therapy efficacy and avoid cancer stem-like cell selection is a highly challenging issue. We show here that inositol trispyrophosphate (ITPP) treatment stably increases oxygen tension and blood flow in melanoma and breast cancer syngeneic models. It suppresses hypoxia-inducible factors (HIFs) and proangiogenic/glycolysis genes and proteins cascade. It selectively activates the tumor suppressor phosphatase and tensin homolog (PTEN) in vitro and in vivo at the endothelial cell (EC) level thus inhibiting PI3K and reducing tumor AKT phosphorylation. These mechanisms normalize tumor vessels by EC reorganization, maturation, pericytes attraction, and lowering progenitor cells recruitment in the tumor. It strongly reduces vascular leakage, tumor growth, drug resistance, and metastasis. ITPP treatment avoids cancer stem-like cell selection, multidrug resistance (MDR) activation and efficiently enhances chemotherapeutic drugs activity. These data show that counteracting tumor hypoxia by stably restoring healthy vasculature is achieved by ITPP treatment, which opens new therapeutic options overcoming hypoxia-related limitations of antiangiogenesis-restricted therapies. By achieving long-term vessels normalization, ITPP should provide the adjuvant treatment required in order to overcome the subtle definition of therapeutic windows for in vivo treatments aimed by the current strategies against angiogenesis-dependent tumors

    An explanation of the very low fluorescence and phosphorescence in pyridine: a CASSCF/CASMP2 study

    No full text
    <p>In this work, we applied the multiconfigurational complete active space self-consistent field method and the multiconfigurational second-order perturbation theory CASMP2 to study the fundamental excited states of pyridine and its possible photophysical and photochemical transformations. Our calculations, which are in agreement with the experimental results corresponding to excitations around the 0–0 transition, showed that the very low experimentally observed fluorescence of pyridine is due to the presence of two almost isoenergetic crossings, one of triple character, S<sub>1</sub>/T<sub>1</sub>/S<sub>0</sub> and the other of S<sub>1</sub>/S<sub>0</sub> character. Both crossings are below the minimum of S<sub>1</sub>(<i>nπ</i><sup>*</sup>) and have a common transition state (S<sub>1</sub>(TS)) with a very low energy barrier (1.85 kcal/mol or 0.08 eV at the CASMP2 level of theory) separating them. A third triple crossing of the type S<sub>1</sub>/T<sub>1</sub>/S<sub>0</sub> lying lower with respect to the other two elucidates the observed T<sub>1</sub>→S<sub>0</sub> radiationless transition. This explains not only pyridine's very low fluorescence and phosphorescence but also its almost negligible photochemistry, showing that photophysics is the prevalent process in this molecule.</p

    Exploration of the DNA Photocleavage Activity of <i>O</i>-Halo-phenyl Carbamoyl Amidoximes: Studies of the UVA-Induced Effects on a Major Crop Pest, the Whitefly <i>Bemisia tabaci</i>

    No full text
    The DNA photocleavage effect of halogenated O-carbamoyl derivatives of 4-MeO-benzamidoxime under UVB and UVA irradiation was studied in order to identify the nature, position, and number of halogens on the carbamoyl moiety that ensure photoactivity. F, Cl, and Br-phenyl carbamate esters (PCME) exhibited activity with the p-Cl-phenyl derivative to show excellent photocleavage against pBR322 plasmid DNA. m-Cl-PCME has diminished activity, whereas the presence of two halogen atoms reduced DNA photocleavage. The substitution on the benzamidoxime scaffold was irrelevant to the activity. The mechanism of action indicated function in the absence of oxygen, probably via radicals derived from the N-O bond homolysis of the carbamates and in air via hydroxyl radicals and partially singlet oxygen. The UVA-vis area of absorption of the nitro-benzamidoxime p-Cl-PCMEs allowed for the investigation of their potential efficacy as photopesticides under UVA irradiation against the whitefly Bemisia tabaci, a major pest of numerous crops. The m-nitro derivative exhibited a moderate specificity against the adult population. Nymphs were not affected. The compound was inactive in the dark. This result may allow for the development of lead compounds for the control of agricultural insect pests that can cause significant economic damage in crop production

    Suppression of hypoxia-induced HIF-1α and of angiogenesis in endothelial cells by myo-inositol trispyrophosphate-treated erythrocytes

    No full text
    Allosteric regulation of oxygen delivery by RBCs may have significant effects on tumor growth. Indeed, angiogenesis, the formation of new blood vessels, is induced in growing tumors by low oxygen partial pressure. Hypoxia-inducible genes are switched on, among which are the VEGF gene and its receptors. Most important, under hypoxia, hypoxia-inducible factor 1α has a significantly prolonged half-life and up-regulates a number of hypoxia genes. Human microvascular endothelial cells (MECs), when subjected in vitro to hypoxia, align to form vessel-like structures as in the angiogenic process. We report here that, when cultured in hypoxic conditions in the presence of human RBCs loaded with a new membrane-permeant allosteric effector of Hb, myo-inositol trispyrophosphate (ITPP), endothelial cells (ECs) do not align, i.e., do not form “vessel”-like structures, because the “loaded” RBCs are capable of releasing under hypoxia more oxygen than their “normal” counterparts. Levels of VEGF and of hypoxia-inducible factor 1α, elevated in the human MECs under hypoxia, were dramatically reduced or even suppressed in the presence of the ITPP-loaded RBCs. Treatment of these ECs directly with free ITPP at different concentrations had no effect on their ability to undertake angiogenesis. Incubation with ITPP enhances the capacity of Hb to release bound oxygen, leading to higher oxygen tension in the hypoxic environment, thus inhibiting hypoxia-induced angiogenesis. These observations are suggestive of a potential in vivo role of ITPP-loaded, “low-O(2)-affinity” RBCs in cancer therapy

    Alkyl and aryl sulfonyl p-pyridine ethanone oximes are efficient DNA photo-cleavage agents

    Get PDF
    Sulfonyloxyl radicals, readily generated upon UV irradiation of p-pyridine sulfonyl ethanone oxime derivatives, effectively cleave DNA, in a pH independent manner, and under either aerobic or anaerobic conditions. p-Pyridine sulfonyl ethanone oxime derivatives were synthesized from the reaction of p-pyridine ethanone oxime with the corresponding sulfonyl chlorides in good to excellent yields. All compounds, at a concentration of 100 μM, were irradiated at 312 nm for 15 min, after incubation with supercoiled circular pBluescript KS II DNA and resulted in extended single- and double- strand cleavages. The cleavage ability was found to be concentration dependent, with some derivatives exhibiting activity even at nanomolar levels. Besides that, p-pyridine sulfonyl ethanone oxime derivatives showed good affinity to DNA, as it was observed with UV interaction and viscosity experiments with CT DNA and competitive studies with ethidium bromide. The compounds interact to CT DNA probably by non-classical intercalation (i.e. groove-binding) and at a second step they may intercalate within the DNA base pairs. The fluorescence emission spectra of pre-treated EB-DNA exhibited a significant or moderate quenching. Comparing with the known aryl carbonyloxyl radicals the sulfonyloxyl ones are more powerful, with both aryl and alkyl sulfonyl substituted derivatives to exhibit DNA photo-cleaving ability, in significantly lower concentrations. These properties may serve in the discovery of new leads for "on demand" biotechnological and medical applications. © 2016 Elsevier B.V. All rights reserved

    Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies

    No full text
    Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel “on demand” chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates

    Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells

    No full text
    A set of arylazo sulfones, known to undergo N–S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking “in silico” calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals
    corecore