9 research outputs found

    Studies on the Thermolysis of Ether-Stabilized Lu(CH2SiMe3)3. Molecular Structure of Lu(CH2SiMe3)3(THF)(diglyme)

    Get PDF
    Lu(CH2SiMe3)3(THF)2 (2) decomposes slowly at room temperature with formation of Me4Si. In order to understand the mechanism of this elimination process, Lu(CH2SiMe3)3([D8]-THF)2 (1), Lu(CH2SiMe3)3(THF)(DME) (3), and Lu(CH2SiMe3)3(THF)(diglyme) (4) were prepared. The results of 1H NMR spectroscopic studies of the decomposition in solution exclude an α- as well as a β -H elimination mechanism and point towards a γ -H elimination. The molecular structure of 4 has been determined by single crystal X-ray diffraction.DFG, GRK 352, Synthetische, mechanistische und reaktionstechnische Aspekte von MetallkatalysatorenDFG, SPP 1166, Lanthanoidspezifische Funktionalitäten in Molekül und Materia

    Discovery and SAR exploration of N-aryl-N-(3-aryl-1,2,4-oxadiazol-5-yl)amines as potential therapeutic agents for prostate cancer

    Get PDF
    A new chemical series of antiproliferative compounds was identified via high-throughput screening on DU-145 human prostate carcinoma cell line (hit compound potency - 5.7 μM). Exploration of the two peripheral diversity vectors of the hit molecule in a hit-targeted library and testing of the resulting compounds led to SAR generalizations and identification of the 'best' pharmacophoric moieties. The latter were merged in a single compound that exhibited a 200-fold better potency than the original hit compound. Specific cancer cell cytotoxicity was confirmed for the most potent compounds

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    Treatment of Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) with 1 equiv of CpPN-type ligands C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>–NH–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>1</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b>) at room temperature readily generated the corresponding CpPN-type bis­(alkyl) complexes <b>1</b> and <b>2a</b>–<b>2c</b>. Addition of 3 equiv of LiCH<sub>2</sub>SiMe<sub>3</sub> to a mixture of <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b> and LnCl<sub>3</sub>(thf)<sub>2</sub> (Ln = Sm and Nd) also afforded the CpPN-type bis­(alkyl) complexes <b>2d</b> and <b>2e</b>. The Cp moiety bonds to the central metal in a classical η<sup>5</sup> mode in all CpPN-type complexes <b>1</b> and <b>2</b>. In contrast, the Cp<sup>Me</sup>PN-type ligands C<sub>5</sub>Me<sub>4</sub>H–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>2</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b>) behaved differently. <b>L<sup>2</sup>(Me)</b> did not react with Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>. Similarly, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> was also inert to Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> even at 50 °C. When the central metal was changed to yttrium, however, the equimolar reaction between Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> in the presence of LiCl afforded two bis­(alkyl) complexes <b>3a</b> and <b>3b</b>. In the main product <b>3a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), the ligand bonds to the Y<sup>3+</sup> ion in a rare η<sup>3</sup>-allyl/κ-N mode, whereas in <b>3b</b>, <b>(</b>C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(LiCl)­(thf), the Cp ring coordinates to the Y<sup>3+</sup> ion in an η<sup>5</sup> mode, and a LiCl unit is located between the Y<sup>3+</sup> ion and the nitrogen atom. When the central metal was changed to lutetium, a bis­(alkyl) complex <b>4a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), and a bis­(alkyl) complex <b>4b</b>, (C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, were isolated. The protonolysis reaction of the IndPN-type ligands C<sub>9</sub>H<sub>7</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>3</sup>(Me)</b>; R = Et, <b>L<sup>3</sup>(Et)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>3</sup>(<sup><i>i</i></sup>Pr)</b>) with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) generated the IndPN-type bis­(alkyl) complexes <b>5a</b>–<b>5c</b>, <b>6</b>, and <b>7a</b>–<b>7c</b>, selectively, where the Ind moiety tends to adopt an η<sup>3</sup>-bonding fashion. The more bulky FluPN-type ligands C<sub>13</sub>H<sub>9</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>4</sub>R (R = H, <b>L<sup>4</sup>(H)</b>; R = Me, <b>L<sup>4</sup>(Me)</b>) were treated with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc and Lu) to afford the FluPN-type bis­(alkyl) complexes <b>8</b> and <b>9a</b> and <b>9b</b>, where the Flu moiety has a rare η<sup>1</sup>-bonding mode. Complexes <b>1</b>–<b>9</b> were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR; X-ray; and elemental analyses. Upon activation with AlR<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the scandium complexes showed good to high catalytic activity for ethylene polymerization. The effects of the sterics and electronics of the ligand, the loading and the type of AlR<sub>3</sub>, the polymerization temperature, and the polymerization time on the catalytic activity were also discussed

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    Treatment of Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) with 1 equiv of CpPN-type ligands C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>–NH–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>1</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b>) at room temperature readily generated the corresponding CpPN-type bis­(alkyl) complexes <b>1</b> and <b>2a</b>–<b>2c</b>. Addition of 3 equiv of LiCH<sub>2</sub>SiMe<sub>3</sub> to a mixture of <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b> and LnCl<sub>3</sub>(thf)<sub>2</sub> (Ln = Sm and Nd) also afforded the CpPN-type bis­(alkyl) complexes <b>2d</b> and <b>2e</b>. The Cp moiety bonds to the central metal in a classical η<sup>5</sup> mode in all CpPN-type complexes <b>1</b> and <b>2</b>. In contrast, the Cp<sup>Me</sup>PN-type ligands C<sub>5</sub>Me<sub>4</sub>H–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>2</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b>) behaved differently. <b>L<sup>2</sup>(Me)</b> did not react with Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>. Similarly, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> was also inert to Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> even at 50 °C. When the central metal was changed to yttrium, however, the equimolar reaction between Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> in the presence of LiCl afforded two bis­(alkyl) complexes <b>3a</b> and <b>3b</b>. In the main product <b>3a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), the ligand bonds to the Y<sup>3+</sup> ion in a rare η<sup>3</sup>-allyl/κ-N mode, whereas in <b>3b</b>, <b>(</b>C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(LiCl)­(thf), the Cp ring coordinates to the Y<sup>3+</sup> ion in an η<sup>5</sup> mode, and a LiCl unit is located between the Y<sup>3+</sup> ion and the nitrogen atom. When the central metal was changed to lutetium, a bis­(alkyl) complex <b>4a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), and a bis­(alkyl) complex <b>4b</b>, (C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, were isolated. The protonolysis reaction of the IndPN-type ligands C<sub>9</sub>H<sub>7</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>3</sup>(Me)</b>; R = Et, <b>L<sup>3</sup>(Et)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>3</sup>(<sup><i>i</i></sup>Pr)</b>) with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) generated the IndPN-type bis­(alkyl) complexes <b>5a</b>–<b>5c</b>, <b>6</b>, and <b>7a</b>–<b>7c</b>, selectively, where the Ind moiety tends to adopt an η<sup>3</sup>-bonding fashion. The more bulky FluPN-type ligands C<sub>13</sub>H<sub>9</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>4</sub>R (R = H, <b>L<sup>4</sup>(H)</b>; R = Me, <b>L<sup>4</sup>(Me)</b>) were treated with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc and Lu) to afford the FluPN-type bis­(alkyl) complexes <b>8</b> and <b>9a</b> and <b>9b</b>, where the Flu moiety has a rare η<sup>1</sup>-bonding mode. Complexes <b>1</b>–<b>9</b> were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR; X-ray; and elemental analyses. Upon activation with AlR<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the scandium complexes showed good to high catalytic activity for ethylene polymerization. The effects of the sterics and electronics of the ligand, the loading and the type of AlR<sub>3</sub>, the polymerization temperature, and the polymerization time on the catalytic activity were also discussed

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    corecore