-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

Studies on the Thermolysis of Ether-Stabilized Lu(CH,SIMe;),.
Molecular Structure of Lu(CH,SiMe;),(THF)(diglyme)

Konstantin A. Rufanov?, Dominique M. M. Freckmann®, Heinz-Jiirgen Kroth®,
Stefan Schutte®, and Herbert Schumann®

& Institut fiir Chemie, Humboldt Universitat zu Berlin, Brook-Taylor-StraRe 2, D-12489 Berlin,
Germany

b Institut fiir Chemie, Technische Universitat Berlin, StraBe des 17. Juni 135, D-10623 Berlin,
Germany

Reprint requests to H. Schumann. E-mail: schumann@chem.tu-berlin.de
Z. Naturforsch. 60b, 533 —537 (2005); received December 27, 2004

Lu(CH,SiMe3)3(THF)2 (2) decomposes slowly at room temperature with formation of MeySi.
In order to understand the mechanism of this elimination process, Lu(CH,SiMe3)3([Dg]-THF)2 (2),
Lu(CH,SiMe3)3(THF)(DME) (3), and Lu(CH,SiMe3)3(THF)(diglyme) (4) were prepared. The re-
sults of H NMR spectroscopic studies of the decomposition in solution exclude an - as well as a
B-H elimination mechanism and point towards a y-H elimination. The molecular structure of 4 has
been determined by single crystal X-ray diffraction.
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Introduction

Until recently chemical bonding in coordination and
organometallic compounds of the lanthanides has been
considered as purely ionic with the metal d orbitals
not involved in covalent o- or m-bonds [1]. However,
some experimental observations cannot be understood
on this simple basis. Very recently the first examples
of imido complexes of the lanthanides have been de-
scribed [2—4], in which the 5d metal acceptor or-
bitals appear to play a significant role in stabilizing 7-
donation from imido groups to a lanthanide (Sm) cen-
ter [5].

Related lanthanide alkylidene complexes are less
well known. In examples containing either neutral sim-
ple imidazol-2-ylidene [5-7] or bis(iminodiphenyl-
phosphorano)methylidene ligands [7], the carbenoid
carbon atoms are stabilized by directly bound hetero-
atoms, and the Ln-C bonds cannot be considered to
have true metallaalkene character.

In 1978 we synthesized THF adducts of homolep-
tic alkyl complexes Ln(CH»SiMes3); of the late lan-
thanides Er, Tm, and Lu (Scheme 1) [8-10] and
studied their thermal decomposition. We found that
these complexes are rather unstable and decompose
evolving Me4Si to leave THF-free polymeric materi-
als. These products are insoluble in organic solvents,
but upon quenching with D3O™ gave rise to singly as

THF

_—
Et,O/pentane
LU(CstiMe3)3(TH F)z

pentane/hexane
_

slow at RT
fast at T>50°C

{M83SiCH2LU:CHSiME3} + Si Mey

LuCl3 + 3LiCH;SiMe3

LU(CstiME3)3(TH F)2

Scheme 1.

well as doubly deuterated Me4Si. This fact was inter-
preted by assuming formation of lanthanide alkylidene
complexes resulting from o-H-elimination of one of
the Me3SiCH, groups (Scheme 1) [9]. However, this
mechanism was not sufficiently proven and the na-
ture of the decomposition products was not studied any
further.

In order to support the proposed formation of Ln=C
species, we decided to reinvestigate the thermal de-
composition of Lu(CH,SiMe3)3(THF), with the aim
to delineate the elimination pathway in this particular
case. In addition, we synthesized other ether adducts of
Lu(CH,SiMe3)3 and studied their chemical and ther-
mal stability.

Results and Discussion

Three elimination pathways can be proposed for
the thermal decomposition of Lu(CH,SiMe3)3(THF),
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Scheme 3.

forming SiMey: i) via a-H elimination from a Lu-
SiCH; group (1), ii) via B-H elimination from a THF
ligand (I1), and iii) via y-H elimination releasing a hy-
drogen from a SICH3 group (111) (Scheme 2).

It is well known that the CH-acidity of O-CH»-
protonsin coordinated THF is higher than in free THF,
therefore decomposition of Lu(CH2SiMes)3(THF)2
can in principle proceed via activation of such a pro-
ton. In order to study this possibility we synthesized
Lu(CH,SiMe3)3([Dg]-THF) (1) and thermolyzed itin
hexane at elevated temperatures (Scheme 3). No for-
mation of Me3SICH,D was observed by NMR and
GC-MS analysis of the products in solution. Based
on these results a f3-H-elimination mechanism can be
ruled out.

Decomposition of Lu(CH,SiMes)3(THF), (2) e-
ther via a-H- or 7y-H-elimination should yield
MeySi and organolutetium compounds. After D3O
quenching these residues are expected to form
Me3SiCH,D and Me3SiCHD,, asdeuterolysis products
of Me3SICH,Lu=CHSiMe;s in the case of o-H elim-
ination, and Me3SICH,D and Me;Si(CH,D), gener-

ated by deuteriolysis of Me3SICH,Lu(u-CH3)2SiMe,
in the case of y-H elimination. Heating of 2 in hexane
to 60 °C for 4 days gave an extremely air-sensitive yel-
lowish product which turns white immediately when
exposed to air. Hydrolysis of this product with D 3PO4
in [Dg]-benzene did not result in the formation of
any MesSiCHD;. In the 33C{*H} NMR spectrum the
1:1:1:1:1 quintet of Me3SICHD, was not observed
but two 1:1:1 triplets appeared with J-_p cou-
pling constants of 18 Hz which can be assigned to the
deuterolysis product Me,Si(CH2D)5,, proving the fact
that y-H elimination of Me4Si is the predominant de-
composition pathway of 2.

X-ray structural investigations of LU(CH,SiMes)s
(THF)2 (2) proved the molecule to have a trigonal
bipyramidal structure with the Me3SiCH, ligands in
equatorial and the THF ligandsin apical positions. The
angle O-Lu-O of 177.73° indicates only a minor devi-
ation from the ideal linear arrangement. On the other
hand, the three Me3SiCH> ligands are distributed un-
symmetrically with C-Lu-C angles of 110.00, 116.16,
and 133.74°. Two Me3Si groups face each other, im-
peding any o-elimination of MesSi (Fig. 1) [11].

Me;Si H
\f y
110°
H ﬁ/134°\'< H
SiMe; ~ MesSi
Fig. 1. View along the O-Lu-O axis to the LuCz plane in
LU(CstiMeg)g(THF)z (2)

In order to facilitate o-H elimination as a decom-
position pathway we decided to preorganize the cis-
configuration of the alkyl groups in the coordina
tion sphere of the Lu center by synthesizing other
ether adducts of Lu(CH,>SiMe3)3 using chelating lig-
ands like DME and diglyme. However, alkylation of
LuCl3 with LiCH,SiMe; in DME/pentane under re-
action conditions used for the synthesis of 2 did not
yield DME-solvated Lu(CH,SiMes)s, but gave only
viscousinsoluble materials. Probably “ate”-complexes
analogous to [Li(TMEDA),] T [LU(CH,SiMes)4]~ are
formed in these reactions as in the presence of
TMEDA [9, 10].

Substitution of THF ligands in 2 by DME resulted
in an increase of the coordination number of Lu to
six and formation of the lutetium complex 3 bearing
one THF and one chelating DME ligand (Scheme 4),
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DME Lu(CH,SiMe3)s(THF)YDME)

Lu(CH,SiMeg)3(THF), 3

2 Lu(CH,SiMes)s(THF )(diglyme)

4

diglyme
Scheme 4.

as demonstrated by the 'H and ¥C NMR spectra
of the product 3. Unfortunately its crystal structure
could not be refined satisfactorily because of disor-
der of the coordinated THF and DME molecules [12].
It appears that in contrast to the direct synthesis of
Lu(CH,SiMe3)3(12-crown-4) from 2 and 12-crown-4,
recently described [13], substitution of only one THF
by DME has occured. A further displacement of coor-
dinated THF by DME could not be accomplished.

The reaction of 2 with diglyme proceeds simi-
larly (Scheme 4), yielding the octahedrally coordi-
nated mixed THF/diglyme lutetium complex 4. The
product crystallizes from pentane at —10 °C as col-
orless needles. The diglyme ligand is coordinated to
|utetium only via two oxygen atomsleaving adangling
CH,CH,OMearm (Fig. 2).

Fig. 2. ORTEP [14] drawing and numbering scheme of the
molecular structure of 4 (30% probability thermal ellip-
soids); all hydrogen atoms have been omitted for clarity; se-
lected bond lengths (A) and angles (°): Lu-C(1) 2.375(6), Lu-
C(5) 2.347(6), Lu-C(9) 2.375(6), Lu-O(1) 2.432(4), Lu-O(2)
2.407(4), Lu-O(3) 2.450(4), C(1)-Lu-C(5) 98.7(2), C(1)-
Lu-C(9) 106.2(2), C(1)-Lu-O(2) 85.44(18), C(1)-Lu-O(3)
87.07(18), C(5)-Lu-C(9) 103.1(2), C(5)-Lu-O(1) 91.47(19),
C(5)-Lu-O(2) 101.45(19), C(9)-Lu-O(1) 88.23(18), C(9)-
Lu-O(3) 86.70(17), O(1)-Lu-O(2) 75.43(15), O(1)-Lu-O(3)
79.54(14), O(2)-Lu-O(3) 66.75(13).

The molecular structure of 4 shows the lutetium
atom in a distored fac-octahedral coordination very
similar to that found in Sm(CH,SIMe3)3(THF)3 [11].
Most angles at the lutetium atom deviate strongly
from linearity or from 90°. The smallest angle O(2)-
Lu-O(3) (66.75°) is a result of the geometry of the
diglyme molecule. The sterical demand of the Me3Si
groups bonded to C(5) and C(9) causes a widen-
ing of the angles C(5)-Lu-C(9) (103.1°) and C(5)-Lu-
0O(2) (101.45°), but nevertheless an almost planar co-
ordination of C(5), C(9), O(3) and O(2) around the
[utetium atom results, including a small C(9)-Lu-O(3)
angle of 86.70°. Owing to the small difference in
the atomic radii of samarium and lutetium [15], the
Ln-C bond lengths are generally the same in 4 and
SM(CH,SIMe3)3(THF)3 [11]. They are also equal in
the distorted trigonal bipyramidal complex 2 and in the
fac-octahedral molecule 4.

In contrast to 2, the two mixed adducts 3 and 4
are thermally robust complexes. 4 shows only little
decomposition after heating for 2 days in heptane
to 70—-90 °C. This observation undoubtly confirms
that a-H elimination is clearly not a favourable pro-
cess in the thermal decomposition of Ln(CH2SiMe3)3
ether adducts. Theremaining y-H elimination pathway,
yielding MesSi and Me3SICH,Lu(u-CH»),SiMey, has
to be confirmed or excluded by further investigations.

Experimental Section

All experiments were performed in an atmosphere of
dry, oxygen-free nitrogen using Schlenk techniques and
solvents dried over sodium/benzophenone and distilled
prior to use. LuClz [16] and LiCH,SiMes; [17] as well
as Lu(CH,SiMe3)3([Dg]-THF)2 (1) and Lu(CH»SiMes)3
(THF)2 (2) [8] were synthesized according to literature meth-
ods. NMR spectra were recorded using Bruker ARX 200
and 400 spectrometers. Lu was determined complexometri-
cally against xylenolorange after digestion in 60% HCIO, at
pH 6to 7 [18].

Lu(CH2SMes)3([ Dg]-THF)2 (1) [8]

IH NMR ([Dg]-benzene, 200 MHz): § = 0.18 (s, 27 H,
CH3Si), —1.02 (s, 6 H, CHy). — 3C{1H} NMR ([D¢]-
benzene, 50 MHz): § = 4.5 (CH3Si), 24.7 (CHy).

Lu(CH2SMes3)3(THF)2 (2) [8]

IH NMR ([Dg]-benzene, 200 MHz): § = —0.99 (s, 6 H,
LUCH>), 0.19 (s, 27 H, CH3Si), 1.35 (m, 8 H, THF), 3.94
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(m, 8 H, THF). - 13C{1H} NMR ([Dg]-benzene, 50 MHz):
8 = 4.7 (CH3Si), 25.1 (LUCH,), 41.7 (THF), 71.0 (THF).

Lu(CH,SMes)s3(THF)(DME) (3)

To a solution of 2 (290 mg, 0.5 mmol) in pentane
(20 ml) a mixture of DME (1 ml, 10 mmol) and pentane
(10 ml) was added via syringe. The reaction mixture was
slowly cooled first to 0 °C and then to —30 °C. A white
crystalline material precipitated. The reaction vessel was
cooled to —78 °C and the mother solution was decanted un-
der nitrogen. The residue was dried under vacuum yield-
ing 300 mg (100%) of colorless crystals of 3. — 'H NMR
([De]-benzene, 400 MHz): 6 = —0.68 (s, 6 H, LUCHy),
0.35 (s, 27 H, SICH3), 1.33 [m, 4 H, B-CHy(THF)], 2.73
[Sor, 4 H, OCH2(DME)], 3.08 [syr, 6 H, OCH3(DME)], 3.63
[Sor, 4 H, a-CHy(THF)]. — 13C{1H} NMR ([Dg]-benzene,
100.64 MHz): 6 = 4.7 (CH3Si), 25.2 (LUCHy), 42.3 [B3-
CH(THF)], 61.0 [CH2(DME)], 69.5 [o-CH2(THF)], 70.8
[CH3(DME)]. — CyoHs1LuO3Si3 (598.85): calcd. C 40.11,
H 8.58, Lu 29.22; found C 40.58, H 8.09, Lu 29.43.

Lu(CH,SMe3)3(THF)(diglyme) (4)

4 was synthesized analogously to 3 from 2 (520 mg,
0.9 mmol) and diglyme (1 ml) in hexane (50 ml). Yield
575 mg (> 99%) of colorless crystals. — 'H NMR ([Dg]-
benzene, 400 MHz): 6 = —0.70 (s, 6 H, LUCH,), 0.40 (s,
27 H, (SiICH3), 1.41 [m, 4 H, B-CH2(THF)], 2.76 [Syr, 4 H,
OCHy(diglyme)], 3.11 [y, 10 H, CH3OCH,(diglyme)],
361 [m, 4 H, a-CHx(THF)]. - 3C{*H} NMR ([D¢]-
benzene, 100.64 MHz): § = 4.8 (SiCH3), 25.6 (LUCHy),
410 [B-CHy(THF)], 60.6 [CHx(diglyme)], 68.6 [c-
CHy(THF)], 69.6 [CH3z(diglyme)]. — CxHssLuO4Si3
(642.90): calcd. C 41.10, H 8.62, Lu 27.22; found C 40.51,
H 8.29, Lu 27.78.

Thermal decompositions of 1

Freshly recrystallized 1 (300 mg) was put in a 25 ml
Schlenk vessel, dissolved in hexane (10 ml), exposed to a
slight vacuum and allowed to stand in an oil bath at 60 °C
for 4 d. Already after one night a yellow precipitate was
formed, leaving the solution colorless and transparent. GC-
MS analysis of the hexane solution showed different hex-
anes, a small amount of pentane, MgSi and [Dg]-THF
Me3SiCH5D could not be detected.

Thermal decomposition of 2

Freshly recrystallized 2 (500 mg) was put in a 50 ml
Schlenk vessel, dissolved in hexane (25 ml), exposed to a

dlight vacuum and allowed to stand in an oil bath at 60 °C
for 4 d. The yellowish precipitate was filtered, washed two
times with hexane and dried in vacuo at 80 °C. Then [Dg]-
benzene (5 ml) was added and a solution of P4O19 (1 g) in
D,0 (10 ml) was added dropwise via a septum. After com-
pletion of the exothermic reaction, the mixture was cooled to
10 °C and the upper [Dg]-benzene layer was slowly syringed
to a Schlenck flask containing Na,SO4 (1 g) and equipped
with a presealed NMR-tube. After standing for 1 h, the so-
lution was lowly decanted into the NMR tube, which was
immediately sealed off. — 13C{*H} NMR ([Dg]-benzene,
50 MHz): 8§ = —0.45 (t, 1Jcp = 18 Hz, CH,D), —0.43 (t,
1Jcp = 18 Hz, CH,D), —0.16 (s, CH3), —0.12 (s, CH3).

Crystallography

Data were collected on a Siemens SMART CCD diffrac-
tometer (graphite monochromated Mo-K,, radiation, A =
0.71073 A) with area-detector by use of » scans at 173 K.
The structure was solved by direct methods and refined
on F2 using all reflections with SHELX-97 [19]. All non-
hydrogen atoms were refined anisotropically. The hydrogen
atoms were placed in calculated positions and assigned to an
isotropic displacement parameter of 0.08 A2. The idealised
methyl-groups were allowed to rotate about their X-C bond.
SADABS[20] was used to perform area-detector scaling and
absorption corrections.

Crystal data and structure refinement details:
CooHssLuO4Si3, M = 642.90, monpclinic, a = 19.8966(3),
b = 18.3186(3), ¢ = 19.4804(2) A, B = 112.748°, V =
6547.88 A3, space group C2/c (no. 15), Z = 8, u =
3.146 mm 1, Dgyeg = 1.304 gem=3, 6 range 1.57-
25.00 deg; 19996 reflections measured, 5762 unique (Rt =
0.0773). GOF on F? 1.041. The final residuals Rr (WRg2)
were 0.0419 (0.0746) [I > 20(1)].

Crystallographic data for the structure of 4 have been
deposited with the Cambridge Crystallographic Data Cen-
tre, CCDC-245414. Copies of the data can be obtained free
of charge on application to The Director, CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK (Fax: int.code+(1223)336-
033; e-mail for inquiry: fileserv@ccdc.cam.ac.uk).
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