219 research outputs found

    Detailed spectroscopy of doubly magic Sn-132

    Get PDF
    The structure of the doubly magic Sn-132(50)82 has been investigated at the ISOLDE facility at CERN, populated both by the beta(-) decay of In-132 and beta(-)-delayed neutron emission of In-133. The level scheme of Sn-13(2) is greatly expanded with the addition of 68 gamma transitions and 17 levels observed for the first time in the beta decay. The information on the excited structure is completed by new gamma transitions and states populated in the beta-n decay of In-133. Improved delayed neutron emission probabilities are obtained both for In-132 and In-133. Level lifetimes are measured via the advanced time-delayed beta gamma gamma(t) fast-timing method. An interpretation of the level structure is given based on the experimental findings and the particle-hole configurations arising from core excitations both from the N = 82 and Z = 50 shells, leading to positive- and negative-parity particle-hole multiplets. The experimental information provides new data to challenge the theoretical description of Sn-132.Peer reviewe

    Commissioning of the spede spectrometer with stable beams

    Get PDF
    The SPectrometer for Electron DEtection (SPEDE) has been constructed for in-beam nuclear structure studies using radioactive ion beams. SPEDE employs a silicon detector for detecting conversion electrons. It is designed to be used in conjunction with the MINIBALL spectrometer at HIE-ISOLDE, CERN.Peer reviewe

    LuxRep: a technical replicate-aware method for bisulfite sequencing data analysis

    Get PDF
    Background: DNA methylation is commonly measured using bisulfite sequencing (BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. Libraries with low conversion rates are typically excluded from analysis resulting in reduced coverage and increased costs.Results: We have developed a probabilistic method and software, LuxRep, that implements a general linear model and simultaneously accounts for technical replicates (libraries from the same biological sample) from different bisulfite-converted DNA libraries. Using simulations and actual DNA methylation data, we show that including technical replicates with low bisulfite conversion rates generates more accurate estimates of methylation levels and differentially methylated sites. Moreover, using variational inference speeds up computation time necessary for whole genome analysis.Conclusions: In this work we show that taking into account technical replicates (i.e. libraries) of BS-seq data of varying bisulfite conversion rates, with their corresponding experimental parameters, improves methylation level estimation and differential methylation detection.</p

    Plasma cell-free DNA methylation marks for episodic memory impairment: a pilot twin study

    Get PDF
    Decline in episodic memory performance usually causes the first clinical symptoms of Alzheimer’s disease. At present, Alzheimer’s disease can only be diagnosed at a very late stage when neurodegeneration and cognitive impairment is already irreversible. New early disease markers are needed for earlier and more efficient Alzheimer’s disease intervention. To identify early disease markers, we implemented a genome-wide bisulphite sequencing method for the analysis of plasma cell-free DNA methylation profiles and compared differences associated with episodic memory performance in Finnish twin pairs. A noticeable amount of cell-free DNA was present in plasma, however, the amounts as well as the genomic coverage of these fragments varied substantially between individuals. We found no significant markers associated with episodic memory performance in the twins’ plasma cell-free DNA methylation profiles. Furthermore, our results indicate that due to the low genomic coverage of cell-free DNA fragments and the variety in these fragments between individuals, the implemented genome-wide bisulphite sequencing method is not optimal for comparing cell-free DNA methylation differences between large groups of individuals.</p

    In-beam spectroscopic study of 244Cf

    Get PDF
    The ground-state rotational band of the neutron-deficient californium (Z = 98) isotope 244Cf was identified for the first time and measured up to a tentative spin and parity of I = 20+. The observation of the rotational band indicates that the nucleus is deformed. The kinematic and dynamic moments of inertia were deduced from the measured gamma-ray transition energies. The behavior of the dynamic moment of inertia revealed an up-bend due to a possible alignment of coupled nucleons in high-j orbitals starting at a rotational frequency of about hw = 0.20 MeV. The results were compared with the systematic behavior of the even-even N = 146 isotones as well as with available theoretical calculations that have been performed for nuclei in the region

    In-beam spectroscopic study of Cf-244

    Get PDF
    The ground-state rotational band of the neutron-deficient californium (Z = 98) isotope 244Cf was identified for the first time and measured up to a tentative spin and parity of I I-pi = 20(+). The observation of the rotational band indicates that the nucleus is deformed. The kinematic and dynamic moments of inertia were deduced from the measured gamma-ray transition energies. The behavior of the dynamic moment of inertia revealed an up-bend due to a possible alignment of coupled nucleons in high-j orbitals starting at a rotational frequency of about (h) over bar (omega) = 0.20 MeV. The results were compared with the systematic behavior of the even-even N = 146 isotones as well as with available theoretical calculations that have been performed for nuclei in the region.Peer reviewe

    Lifetime measurements of lowest states in the πg<sub>7/2</sub>⊗νh<sub>11/2</sub> rotational band in <sup>112</sup>I

    Get PDF
    A differential-plunger device was used to measure the lifetimes of the lowest states in the πg7/2 ⊗ νh11/2 rotational band in doubly odd 112I with the 58Ni(58Ni, 3pn) reaction. A differential decay curve method was performed using the fully shifted and degraded γ -ray intensity measurements as a function of target-to-degrader distance. The lifetimes of the lowest three states in the πg7/2 ⊗ νh11/2 band in 112I were measured to be 124(30), 130(25), and 6.5(5) ps, respectively. As the lifetimes of successive excited states in a rotational band are expected to decrease with increasing excitation energy, these measurements suggest that the order of the transitions in the established band in 112I may need revising and that the state tentatively assigned to be (7−) may not belong to the rotational band.peerReviewe

    Spectroscopy of Kr 70 and isospin symmetry in the T=1 fpg shell nuclei SPECTROSCOPY of Kr 70 and ISOSPIN SYMMETRY ... D. M. DEBENHAM et al.

    Get PDF
    The recoil-β tagging technique has been used in conjunction with the Ca40(S32,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2+ and, tentatively, 4+ states in the nucleus Kr70. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J=0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all three nuclei have the same oblate shape at low-spin. The A=70 results are compared with the experimental and shell model predicted TED and mirror energy differences (MED) for the mass 66 and 74 systems. The comparisons clearly demonstrate the importance of the isotensor INC interaction in replicating the TED data in this region. Issues related to the observed MED values and their interpretation within the shell model are discussed
    corecore