964 research outputs found

    Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater

    Get PDF
    A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1(T), was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1(T) was found to be an abundant micro-organism in the sludge at the time of isolation. Hydrogen, formate, pyruvate, lactate, malate, fumarate, succinate, ethanol and glycerol served as electron donors for sulfate reduction. Organic substrates were incompletely oxidized to acetate. 16S rRNA gene sequence analysis showed that the closest recognized relative to strain SB1(T) was Desulfovibrio gigas DSM 1382(T) (97.5 % similarity). The G+C content of the genomic DNA of strain SB1(T) was 62.2 mol%, comparable with that of Desulfovibrio gigas DSM 1382(T) (60.2 mol%). However, the level of DNA-DNA relatedness between strain SB1(T) and Desulfovibrio gigas DSM 1382(T) was only 56.0 %, indicating that the two strains are not related at the species level. Strain SB1(T) could also be differentiated from Desulfovibrio gigas based on phenotypic characteristics, such as major cellular fatty acid composition (anteiso-C(15 : 0), iso-C(14 : 0) and C(18 : 1) cis 9) and substrate utilization. Strain SB1(T) is therefore considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio paquesii sp. nov. is proposed. The type strain is SB1(T) (=DSM 16681(T)=JCM 14635(T)

    Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria

    Get PDF
    The 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria were sequenced and evaluated for molecular identification of these bacteria. All the sequenced spacers contained genes for tRNAIle and tRNAAla, and the antitermination element. The sequences revealed 56.8-78.3% similarity. By PCR amplification of the spacers from 57 strains of acetic acid bacteria, single products of similar sizes were produced. Digestion of the spacers by HaeIII and HpaII restriction enzymes resulted in 12 distinct groups of restriction types. All the restriction profiles obtained after analysis of microbial populations from vinegar matched one of the 12 group

    Latest trends in industrial vinegar production and the role of acetic acid bacteria: classification, metabolism, and applications—a comprehensive review

    Get PDF
    Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential

    Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    Get PDF
    peer-reviewedLactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli.This work was supported by a Principal Investigator Award (07/IN.1/B1780) from Science Foundation Ireland to PWOT. BAN was the recipient of an Embark studentship from the Irish Research Council for Science Engineering and Technology. TD and KN were supported by the Alimentary Pharmabiotic Centre, funded by Science Foundation Ireland

    Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost

    Get PDF
    A bacterial strain isolated from sewage sludge compost, strain SC-083T, was characterized. The isolate was a motile, Gram-positive, short rod, forming coryneform V-shaped cells during the early stages of growth. The organism was strictly aerobic and able to grow between 22 and 36 °C and between pH 5.5 and 8.0. The predominant fatty acids were cyclohexyl-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0, the major respiratory quinones were menaquinone 11 (MK-11) and 12 (MK-12), and the genomic DNA G+C content was 68 mol%. The peptidoglycan contained the diagnostic diamino acids ornithine and 2,4-diaminobutyric acid and was of acetyl type. The 16S rRNA gene sequence analysis indicated that this isolate belongs to the family Microbacteriaceae with the type strains of the species Leifsonia xyli (96 % gene sequence similarity), Leifsonia shinshuensis (96 %), Leifsonia naganoensis (95 %), Leifsonia aquatica (95 %), Agromyces ramosus (95 %) and Curtobacterium citreum (95 %) among the closest phylogenetic neighbours. The phylogenetic analysis and phenetic characteristics support the proposal of a new genus and a novel species, with the name Humibacter albus gen. nov., sp. nov. The type strain of Humibacter albus is SC-083T (=DSM 18994T =CCUG 54538T =LMG 23996T

    Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov.

    Get PDF
    Endospore-forming bacteria were isolated from insect-pathogenic nematodes, Heterorhabditis spp., from three diverse geographical locations. Spindle-shaped sporangia of these bacteria adhere to the free-living infective stage of the nematode, which carries them to new insect hosts, where the bacterium reproduces. These isolates were characterized based on phenotypic and chemotaxonomic properties and 16S rRNA gene sequences. Analysis of the 16S rRNA gene placed the isolates within the genus Paenibacillus. The isolates shared higher sequence similarities with each other (95.1-100%) than they did with any other named species within the genus (89.2-94%). Paenibacillus macquariensis, Paenibacillus azoreducens, Paenibacillus amylolyticus and Paenibacillus durus were among the species with highest sequence similarity to these isolates. The isolates shared a high degree of phenotypic similarity and were easily distinguished from closely related members of the genus. Anteiso-C15:0 and C16:0 were among the major fatty acid types and the DNA G + C content was approximately 44 mol% in all isolates. DNA-DNA similarity studies revealed genomic heterogeneity among the isolates, such that they are likely to represent more than one species. Two of the isolates (both from a Heterorhabditis megidis isolate from Estonia) are phenotypically distinguishable from the others and are proposed as a single species, Paenibacillus nematophilus sp. nov. The type strain for this novel species is NEM1aT (=DSM 13559T =NCIMB 13845T). The other isolates, although closely related to the proposed species, are likely to represent at least one, but most likely two, novel species

    Complete genome sequence of Spirosoma linguale type strain (1).

    Get PDF
    Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the third completed genome sequence of a member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plasmids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project
    corecore