17 research outputs found

    Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    Get PDF
    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect gamma rays from the excited states in 12Be. The gamma-ray detection enabled a clear identification of the four known bound states in 12Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results

    Study of bound states in Be-10 by one neutron removal reactions of Be-11

    Get PDF
    The bound states of Be-10 have been studied by removing single neutrons from Be-11 nuclei. A 2.8 MeV u(-1) beam of Be-11 was produced at ISOLDE, CERN and directed on to both proton and deuteron targets inducing one-neutron removal reactions. Charged particles were detected to identify the two reaction channels (d, t) and (p, d), and the individual states in Be-10 were identified by gamma detection. All bound states but one were populated and identified in the (d, t) reaction. The combination of REX-ISOLDE and MINIBALL allowed for a clean separation of the high-lying states in Be-10. This is the first time these states have been separated in a reaction experiment. Differential cross sections have been calculated for all the reaction channels and compared to DWBA calculations. Spectroscopic factors are derived and compared to values from the litterature. While the overall agreement between the spectrocopic factors is poor, the ratio between the ground state and the first excited state is in agreement with the previous measured ones. Furthermore, a significant population of the 2(2)(+) state is observed, which which may indicate the presence of multi-step processes at our beam energy.Peer reviewe

    Study of bound states in ¹⁰Be by one neutron removal reactions of ¹¹Be

    Get PDF
    The bound states of ¹⁰Be have been studied by removing single neutrons from ¹¹Be nuclei. A 2.8 MeV u⁻¹ beam of ¹¹Be was produced at ISOLDE, CERN and directed on to both proton and deuteron targets inducing one-neutron removal reactions. Charged particles were detected to identify the two reaction channels (d, t) and (p, d), and the individual states in ¹⁰Be were identified by gamma detection. All bound states but one were populated and identified in the (d, t) reaction. The combination of REX-ISOLDE and MINIBALL allowed for a clean separation of the high-lying states in ¹⁰Be. This is the first time these states have been separated in a reaction experiment. Differential cross sections have been calculated for all the reaction channels and compared to DWBA calculations. Spectroscopic factors are derived and compared to values from the litterature. While the overall agreement between the spectrocopic factors is poor, the ratio between the ground state and the first excited state is in agreement with the previous measured ones. Furthermore, a significant population of the 2⁺₂ state is observed, which which may indicate the presence of multi-step processes at our beam energy

    Intense Ar31-35 beams produced with a nanostructured CaO target at ISOLDE

    Get PDF
    At the ISOLDE facility at CERN, thick targets are bombarded with highly energetic pulsed protons to produce radioactive ion beams (RIBs). The isotopes produced in the bulk of the material have to diffuse out of the grain and effuse throughout the porosity of the material to a transfer line which is connected to an ionizer, from which the charged isotopes are extracted and delivered for physics experiments. Calcium oxide (CaO) powder targets have been used to produce mainly neutron deficient argon and carbon RIBs over the past decades. Such targets presented unstable yields, either decaying over time or low from the beginning of operation. These problems were suspected to come from the degradation of the target microstructure (sintering due to high temperature and/or high proton intensity). In this work, a CaO microstructural study in terms of sintering was conducted on a nanostructured CaO powder synthesized from the respective carbonate. Taking the results of this study, several changes were made at ISOLDE in terms of the CaO target production, handling and operation in order to produce and maintain the nanostructured CaO. The new target, the first nanostructured target to be operated at ISOLDE, showed improved yields of (exotic) Ar and more importantly a stable yield over the whole operation time, while operating with lower temperatures. This contradicts the ISOL paradigm of using the highest possible temperature regardless of the target's microstructure degradation. (C) 2014 Published by Elsevier B.V

    Contributions to Research at ISOLDE in 2010

    No full text
    This preprint presents reports on the advancement of selected topics of research carried out at ISOLDE during the 2010 running period. It also discusses research and development on new targets and ion sources as well as a forward look on new topics which could be initiated by installing a storage ring for radioactive ions

    Relative proton and γ widths of astrophysically important states in 30^{30}S studied in the β-delayed decay of 31^{31}Ar

    No full text
    Resonances just above the proton threshold in 30S affect the 29P(p, γ )30S reaction under astrophysical conditions. The (p,γ )-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and γ partial widths of resonances in 30S. The widths are determined from the β2p- and βpγ -decay of 31Ar, which is produced at the ISOLDE radioactive ion beam facility at the European research organization CERN. Experimental limits on the ratio between the proton and γ partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4689.2(24) keV is identified in the γ spectrum, and an upper limit on the p/ γ ratio of 0.26 (95% C.L.) is found. In the two-proton spectrum two levels at 5227(3) keV and 5847(4) keV are identified. These levels were previously seen to γ decay and upper limits on the γ/ p ratio of 0.5 and 9, respectively, (95% C.L.) are found, where the latter differs from previous calculations

    Multi-particle emission in the decay of 31^{31}Ar

    Get PDF
    A multi-hit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the beta-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the beta-delayed two-proton-gamma-decay. A new method for determination of the spin of low-lying levels in the beta-proton-daughter 30S using proton-proton angular correlations is presented and used for the level at 5.2 MeV, which is found to be either a 3+ or 4+ level, with the data pointing towards the 3+. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi beta-strength gives a total measured branching for the beta-3p-decay of 3.60(44) %, which is lower than the theoretical value found to be 4.24(43) %. Finally the strongest gamma-transitions in the decay of 33Ar are shown including a line at 4734(3) keV associated to the decay of the IAS, which has not previously been identified
    corecore